Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Microbiol ; 23(1): 6, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617571

RESUMO

The control of cellular zinc (Zn) concentrations by dedicated import and export systems is essential for the survival and virulence of Pseudomonas aeruginosa. The transcription of its many Zn transporters is therefore tightly regulated by a known set of transcription factors involved in either the import or the export of Zn. In this work, we show that the Zur protein, a well-known repressor of Zn import, plays a dual role and functions in both import and export processes. In a situation of Zn excess, Zur represses Zn entry, but also activates the transcription of czcR, a positive regulator of the Zn export system. To achieve this, Zur binds at two sites, located by DNA footprinting in the region downstream the czcR transcription start site. In agreement with this regulation, a delay in induction of the efflux system is observed in the absence of Zur and Zn resistance is reduced. The discovery of this regulation highlights a new role of Zur as global regulator of Zn homeostasis in P. aeruginosa disclosing an important link between Zur and zinc export.


Assuntos
Pseudomonas aeruginosa , Zinco , Zinco/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética
2.
Biometals ; 36(4): 729-744, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36472780

RESUMO

In the genus Pseudomonas, zinc homeostasis is mediated by a complete set of import and export systems, whose expression is precisely controlled by three transcriptional regulators: Zur, CzcR and CadR. In this review, we describe in detail our current knowledge of these systems, their regulation, and the biological significance of zinc homeostasis, taking Pseudomonas aeruginosa as our paradigm. Moreover, significant parts of this overview are dedicated to highlight interactions and cross-regulations between zinc and copper import/export systems, and to shed light, through a review of the literature and comparative genomics, on differences in gene complement and function across the whole Pseudomonas genus. The impact and importance of zinc homeostasis in Pseudomonas and beyond will be discussed throughout this review.


Assuntos
Pseudomonas , Zinco , Pseudomonas/genética , Pseudomonas/metabolismo , Zinco/metabolismo , Homeostase , Pseudomonas aeruginosa/genética , Cobre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Adv Exp Med Biol ; 1386: 371-395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258080

RESUMO

Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Bactérias/metabolismo , Antibacterianos/farmacologia
4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362029

RESUMO

Implant-associated infections are highly challenging to treat, particularly with the emergence of multidrug-resistant microbials. Effective preventive action is desired to be at the implant site. Surface biofunctionalization of implants through Ag-doping has demonstrated potent antibacterial results. However, it may adversely affect bone regeneration at high doses. Benefiting from the potential synergistic effects, combining Ag with other antibacterial agents can substantially decrease the required Ag concentration. To date, no study has been performed on immobilizing both Ag and Fe nanoparticles (NPs) on the surface of additively manufactured porous titanium. We additively manufactured porous titanium and biofunctionalized its surface with plasma electrolytic oxidation using a Ca/P-based electrolyte containing Fe NPs, Ag NPs, and the combinations. The specimen's surface morphology featured porous TiO2 bearing Ag and Fe NPs. During immersion, Ag and Fe ions were released for up to 28 days. Antibacterial assays against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa showed that the specimens containing Ag NPs and Ag/Fe NPs exhibit bactericidal activity. The Ag and Fe NPs worked synergistically, even when Ag was reduced by up to three times. The biofunctionalized scaffold reduced Ag and Fe NPs, improving preosteoblasts proliferation and Ca-sensing receptor activation. In conclusion, surface biofunctionalization of porous titanium with Ag and Fe NPs is a promising strategy to prevent implant-associated infections and allow bone regeneration and, therefore, should be developed for clinical application.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Titânio/farmacologia , Prata/farmacologia , Porosidade , Antibacterianos/farmacologia
5.
RNA Biol ; 17(5): 637-650, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32050838

RESUMO

RNA helicases are fundamental players in RNA metabolism: they remodel RNA secondary structures and arrange ribonucleoprotein complexes. While DExH-box RNA helicases function in ribosome biogenesis and splicing in eukaryotes, information is scarce about bacterial homologs. HrpB is the only bacterial DExH-box protein whose structure is solved. Besides the catalytic core, HrpB possesses three accessory domains, conserved in all DExH-box helicases, plus a unique C-terminal extension (CTE). The function of these auxiliary domains remains unknown. Here, we characterize genetically and biochemically Pseudomonas aeruginosa HrpB homolog. We reveal that the auxiliary domains shape HrpB RNA preferences, affecting RNA species recognition and catalytic activity. We show that, among several types of RNAs, the single-stranded poly(A) and the highly structured MS2 RNA strongly stimulate HrpB ATPase activity. In addition, deleting the CTE affects only stimulation by structured RNAs like MS2 and rRNAs, while deletion of accessory domains results in gain of poly(U)-dependent activity. Finally, using hydrogen-deuterium exchange, we dissect the molecular details of HrpB interaction with poly(A) and MS2 RNAs. The catalytic core interacts with both RNAs, triggering a conformational change that reorients HrpB. Regions within the accessory domains and CTE are, instead, specifically responsive to MS2. Altogether, we demonstrate that in bacteria, like in eukaryotes, DExH-box helicase auxiliary domains are indispensable for RNA handling.


Assuntos
Proteínas de Bactérias/química , RNA Helicases DEAD-box/química , RNA/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Modelos Moleculares , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa , RNA/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade
6.
J Nat Prod ; 83(8): 2347-2356, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32705864

RESUMO

The biotransformation of a mixture of resveratrol and pterostilbene was performed by the protein secretome of Botrytis cinerea. Several reaction conditions were tested to overcome solubility issues and to improve enzymatic activity. Using MeOH as cosolvent, a series of unusual methoxylated compounds was generated. The reaction was scaled-up, and the resulting mixture purified by semipreparative HPLC-PDA-ELSD-MS. Using this approach, 15 analogues were isolated in one step. Upon full characterization by NMR and HRMS analyses, eight of the compounds were new. The antibacterial activities of the isolated compounds were evaluated in vitro against the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. The selectivity index was calculated based on cytotoxic assays performed against human liver carcinoma cells (HepG2) and the human breast epithelial cell line (MCF10A). Some compounds revealed remarkable antibacterial activity against multidrug-resistant strains of S. aureus with moderate human cell line cytotoxicity.


Assuntos
Antibacterianos/farmacologia , Botrytis/enzimologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estilbenos/farmacologia , Biotransformação , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estudo de Prova de Conceito
7.
Microb Pathog ; 77: 36-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25448466

RESUMO

Pseudomonas aeruginosa chronic lung infections are the leading cause of mortality in cystic fibrosis patients, a serious problem which is notably due to the numerous P. aeruginosa virulence factors, to its ability to form biofilms and to resist the effects of most antibiotics. Production of virulence factors and biofilm formation by P. aeruginosa is highly coordinated through complex regulatory systems. We recently found that CzcRS, the zinc and cadmium-specific two-component system is not only involved in metal resistance, but also in virulence and carbapenem antibiotic resistance in P. aeruginosa. Interestingly, zinc has been shown to be enriched in the lung secretions of cystic fibrosis patients. In this study, we investigated whether zinc might favor P. aeruginosa pathogenicity using an artificial sputum medium to mimic the cystic fibrosis lung environment. Our results show that zinc supplementation triggers a dual P. aeruginosa response: (i) it exacerbates pathogenicity by a CzcRS two-component system-dependent mechanism and (ii) it stimulates biofilm formation by a CzcRS-independent mechanism. Furthermore, P. aeruginosa cells embedded in these biofilms exhibited increased resistance to carbapenems. We identified a novel Zn-sensitive regulatory circuit controlling the expression of the OprD porin and modifying the carbapenem resistance profile. Altogether our data demonstrated that zinc levels in the sputum of cystic fibrosis patients might aggravate P. aeruginosa infection. Targeting zinc levels in sputum would be a valuable strategy to curb the increasing burden of P. aeruginosa infections in cystic fibrosis patients.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/química , Escarro/microbiologia , Zinco/análise , Antibacterianos/farmacologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais , Virulência , Zinco/metabolismo
8.
Adv Healthc Mater ; : e2304118, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412457

RESUMO

The burden of bacterial wound infections has considerably increased due to antibiotic resistance to most of the currently available antimicrobial drugs. Herein, for the first time, a chemical coupling of two cationic N-aryl (pyridyl and aminocinnamyl) chitosan derivatives to antimicrobial peptide dendrimers (AMPDs) of different generations (first, second, and third) via thioether-haloacetyl reaction is reported. The new chitosan-AMPD conjugates show high selectivity by killing Pseudomonas aeruginosa and very low toxicity toward mammalian cells, as well as extremely low hemolysis to red blood cells. Electron microscopy reveals that the new chitosan derivatives coupled to AMPD destroy both the inner and outer membranes of Gram-negative P. aeruginosa. Moreover, chitosan-AMPD conjugates show synergetic effects within extremely low concentrations. The new chitosan-AMPD conjugates can be used as potent antimicrobial therapeutic agents, to eradicate pathogens such as those present in acute and chronic infected wounds.

9.
Front Chem ; 10: 912396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711965

RESUMO

A series of complex stilbene dimers have been generated through biotransformation of resveratrol, pterostilbene, and the mixture of both using the enzymatic secretome of Botrytis cinerea Pers. The process starts with achiral molecules and results in the generation of complex molecules with multiple chiral carbons. So far, we have been studying these compounds in the form of enantiomeric mixtures. In the present study, we isolated the enantiomers to determine their absolute configuration and assess if the stereochemistry could impact their biological properties. Eight compounds were selected for this study, corresponding to the main scaffolds generated (pallidol, leachianol, restrytisol and acyclic dimers) and the most active compounds (trans-δ-viniferin derivatives) against a methicillin-resistant strain of Staphylococcus aureus (MRSA). To isolate these enantiomers and determine their absolute configuration, a chiral HPLC-PDA analysis was performed. The analysis was achieved on a high-performance liquid chromatography system equipped with a chiral column. For each compound, the corresponding enantiomeric pair was obtained with high purity. The absolute configuration of each enantiomer was determined by comparison of experimental and calculated electronic circular dichroism (ECD). The antibacterial activities of the four trans-δ-viniferin derivatives against two S. aureus strains were evaluated.

10.
Carbohydr Polym ; 280: 119025, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027127

RESUMO

We report herein a new chemical platform for coupling chitosan derivatives to antimicrobial peptide dendrimers (AMPDs) with different degrees of ramification and molecular weights via thiol-maleimide reactions. Previous studies showed that simple incorporation of AMPDs to polymeric hydrogels resulted in a loss of antibacterial activity and augmented cytotoxicity to mammalian cells. We have shown that coupling AMPDs to chitosan derivatives enabled the two compounds to act synergistically. We showed that the antimicrobial activity was preserved when incorporating AMPD conjugates into various biopolymer formulations, including nanoparticles, gels, and foams. Investigating their mechanism of action using electron and time-lapse microscopy, we showed that the AMPD-chitosan conjugates were internalized after damaging outer and inner Gram-negative bacterial membranes. We also showed the absence of AMPD conjugates toxicity to mammalian cells. This chemical technological platform could be used for the development of new membrane disruptive therapeutics to eradicate pathogens present in acute and chronic wounds.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Quitosana , Dendrímeros , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/toxicidade , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/toxicidade , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Hemólise , Humanos , Testes de Sensibilidade Microbiana , Polímeros
11.
Front Microbiol ; 12: 739988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690984

RESUMO

Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to counteract bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptive homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.

12.
Front Microbiol ; 11: 911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477311

RESUMO

Zinc (Zn) is a trace element essential for life but can be toxic if present in excess. While cells have import systems to guarantee a vital Zn intracellular concentration, they also rely on export systems to avoid lethal Zn overload. In particular, the opportunistic pathogen Pseudomonas aeruginosa possesses four Zn export systems: CadA, CzcCBA, CzcD, and YiiP. In this work, we compare the importance for bacterial survival of each export system at high Zn concentrations. We show that the P-type ATPase CadA, and the efflux pump CzcCBA are the main efflux systems affecting the bacterium tolerance to Zn. In addition, cadA and czcCBA genes expression kinetics revealed a hierarchical organization and interdependence. In the presence of high Zn concentrations, cadA expression is very rapidly induced (<1 min), while czcCBA expression occurs subsequently (>15 min). Our present data show that the fast responsiveness of cadA to Zn excess is due to its transcriptional activator, CadR, which is constitutively present on its promoter and promptly activating cadA gene expression upon Zn binding. Moreover, we showed that CadA is essential for a timely induction of the CzcCBA efflux system. Finally, we observed an induction of cadA and czcCBA efflux systems upon phagocytosis of P. aeruginosa by macrophages, in which a toxic metal boost is discharged into the phagolysosome to intoxicate microbes. Importantly, we demonstrated that the regulatory link between induction of the CzcCBA system and the repression of the OprD porin responsible for carbapenem antibiotic resistance, is maintained in the macrophage environment.

13.
Biochim Biophys Acta Gene Regul Mech ; 1862(7): 722-733, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29410128

RESUMO

Zinc is an essential trace element for almost all living organisms. In the opportunistic bacterial pathogen Pseudomonas aeruginosa, zinc has been shown to play an important role in virulence, in colonization of the host organism and has also been shown to be involved in antibiotic resistance. P. aeruginosa possesses numerous systems enabling it to thrive in zinc-depleted conditions as well as high-zinc situations, two environments that are encountered during human infection. These capabilities account for its pathogenic strength. The main aim of this review is to focus on zinc homeostasis in P. aeruginosa and the genetic regulation of the systems involved. The interconnection with virulence, as well as the mechanism of co-regulation between metal and antibiotic resistance, are of prime interest for understanding the molecular mechanisms allowing P. aeruginosa to switch from its existence as a common environmental bacterium to a severe opportunistic pathogen. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/patogenicidade , Zinco/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Homeostase , Pseudomonas aeruginosa/metabolismo , Virulência
14.
ACS Comb Sci ; 21(3): 171-182, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30607939

RESUMO

A generic procedure for direct bromination of polyphenol in crude plant extracts was developed to generate multiple "unnatural" halogenated natural products for further bioassay evaluation. To better control the halogenation procedure, the bromination was optimized with a flavonoid standard, and the reactions were monitored by high-performance liquid chromatography photometric diode array coupled to the evaporative light scattering detection (ELSD). ELSD detection was successfully used for a relative yield estimation of the compounds obtained. From the halogenation of hesperitin (11), five brominated compounds were obtained. After optimization, the reaction was successfully applied to the methanolic extract of Citrus sinensis peels, a typical waste biomass and also to the methanolic extract of the medicinal plant Curcuma longa. In both cases, the methanolic extracts were profiled by NMR for a rapid estimation of the polyphenol versus primary metabolite content. An enriched secondary metabolites extract was obtained using vacuum liquid chromatography and submitted to bromination. Metabolite profiling performed by ultrahigh purity liquid chromatography time-of-flight high-resolution mass spectrometry revealed the presence of various halogenated products. To isolate these compounds, the reactions were scaled up, and six halogenated analogues were isolated and fully characterized by NMR and high-resolution electrospray ionization mass spectrometry analyses. The antibacterial properties of these compounds were evaluated using in vitro bioassays against multiresistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Some of the halogenated derivatives obtained presented moderate antibacterial properties.


Assuntos
Antibacterianos/química , Citrus sinensis/química , Curcuma/química , Extratos Vegetais/química , Polifenóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos/métodos , Halogenação , Humanos , Metanol/química , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29535973

RESUMO

Pseudomonas aeruginosa is a severe opportunistic pathogen and is one of the major causes of hard to treat burn wound infections. Herein we have used an RNA-seq transcriptomic approach to study the behavior of P. aeruginosa PAO1 growing directly on human burn wound exudate. A chemical analysis of compounds used by this bacterium, coupled with kinetics expression of central genes has allowed us to obtain a global view of P. aeruginosa physiological and metabolic changes occurring while growing on human burn wound exudate. In addition to the numerous virulence factors and their secretion systems, we have found that all iron acquisition mechanisms were overexpressed. Deletion and complementation with pyoverdine demonstrated that iron availability was a major limiting factor in burn wound exudate. The quorum sensing systems, known to be important for the virulence of P. aeruginosa, although moderately induced, were activated even at low cell density. Analysis of bacterial metabolism emphasized importance of lactate, lipid and collagen degradation pathways. Overall, this work allowed to designate, for the first time, a global view of P. aeruginosa characteristics while growing in human burn wound exudate and highlight the possible therapeutic approaches to combat P. aeruginosa burn wound infections.


Assuntos
Queimaduras/complicações , Exsudatos e Transudatos/microbiologia , Perfilação da Expressão Gênica , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/fisiologia , Transcriptoma , Sistemas de Secreção Bacterianos , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Ferro/metabolismo , Mutação , Infecções por Pseudomonas/metabolismo , Percepção de Quorum , Fatores de Virulência/genética
16.
Genes (Basel) ; 7(10)2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27706108

RESUMO

The metal-specific CzcRS two-component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the expression of multiple genes including virulence factors. CzcR is therefore an important regulator connecting (i) metal response, (ii) pathogenicity and (iii) antibiotic resistance in P. aeruginosa. Recent data have suggested that other regulators could negatively control oprD expression in the presence of zinc. Here we show that the RNA chaperone Hfq is a key factor acting independently of CzcR for the repression of oprD upon Zn treatment. Additionally, we found that an Hfq-dependent mechanism is necessary for the localization of CzcR to the oprD promoter, mediating oprD transcriptional repression. Furthermore, in the presence of Cu, CopR, the transcriptional regulator of the CopRS two-component system also requires Hfq for oprD repression. Altogether, these results suggest important roles for this RNA chaperone in the context of environment-sensing and antibiotic resistance in P. aeruginosa.

17.
FEMS Microbiol Lett ; 362(20)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26391525

RESUMO

The contribution of microbiology to the scientific advances of modern experimental biology has very often made the difference. Despite this, its role as an independent discipline has slowly started to fade away. This situation has been worsening due to (i) a marginal role of microbiology in academic curricula and (ii) a low or misplaced interest by the public at large towards this field of study. In order to counter this phenomenon, microbiology researchers and passionate scientists have made several efforts to engage and inform the broad public and academic policymakers about the importance of microbiology as an independent discipline. One of the approaches used in this direction is to support the teaching of microbiology in schools. BiOutils, a science communication platform based within a microbiology lab, has been committed to this goal since its creation in 2007. In this article, we describe how the platform is able to work in synergy with school teachers, providing engaging activities that can be performed in schools' classrooms. Our aim is to provide a perspective on how every microbiology lab with little costs and efforts can support the teaching of a discipline that will remain independent thanks to the fascination that they will be able to transmit.


Assuntos
Microbiologia/educação , Ciência/educação , Currículo , Laboratórios , Microbiologia/organização & administração , Instituições Acadêmicas , Universidades
18.
Life Sci ; 112(1-2): 68-73, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25086378

RESUMO

AIMS: The synthetic counterparts of serum high density lipoproteins (HDL; reconstituted HDL, reHDL) are assuming increasing importance as a therapeutic vector. They circulate not only in blood, but also outside the vascular compartment giving access to all body tissues. Presently, the therapeutic use of reHDL exploits inherent HDL functions. Our aim was to determine if HDL functionality could be modulated by attaching peptides not normally associated with the complex. MAIN METHODS: A peptide chimera was designed by linking the signal peptide of the HDL-associated enzyme paraoxonase-1 (PON1) to the coding region for the intracellular enzyme paraoxonase-2 (PON2). KEY FINDINGS: The signal peptide modified the properties of PON2, promoting its secretion from cells and binding to HDL. Enzyme activity of the chimera protein was highly stable. Conditioned HDL showed the functions of PON2 in its ability to hydrolyse typical PON2 substrates, namely homoserine lactones. Further in vitro studies showed that conditioned HDL was able to reduce the virulence of Pseudomonas aeruginosa. Both biofilm formation and the activation of the quorum sensing systems las and rhl, responsible for bacterial virulence, were significantly reduced. SIGNIFICANCE: The study provides proof of principal that the signal peptide of PON1 can be used to attach peptides to HDL and thus modulate HDL function. They may provide a vector that is ubiquitously distributed in extracellular body fluids for designing therapeutic strategies to address different pathophysiological states.


Assuntos
Arildialquilfosfatase/genética , Lipoproteínas HDL/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Arildialquilfosfatase/metabolismo , Meios de Cultivo Condicionados/farmacologia , Expressão Gênica , Células HEK293 , Humanos , Hidrólise , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Fígado/química , Fígado/enzimologia , Engenharia de Proteínas , Sinais Direcionadores de Proteínas/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
19.
PLoS One ; 7(5): e38148, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666466

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Transcrição Gênica , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/patogenicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Metais Pesados/farmacologia , Fenótipo , Porinas/genética , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Piocianina/biossíntese , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA