Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Physiol Biochem ; 30(6): 1444-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23183381

RESUMO

BACKGROUND/AIMS: The sodium/bicarbonate transporter NBCn1 plays an essential role in intracellular pH regulation and transepithelial HCO(3)(-) movement in the body. NBCn1 also has sodium channel-like activity uncoupled to Na/HCO(3) cotransport. We previously reported that NBCn1 interacts with the postsynaptic density protein PSD-95 in the brain. Here, we elucidated the structural determinant and functional consequence of NBCn1/PSD-95 interaction. RESULTS: In rat hippocampal CA3 neurons, NBCn1 was localized to the postsynaptic membranes of both dendritic shafts and spines and occasionally to the presynaptic membranes. A GST/NBCn1 fusion protein containing the C-terminal 131 amino acids of NBCn1 pulled down PSD-95 from rat brain lysates, whereas GST/NBCn1-ΔETSL (deletion of the last four amino acids) and GST/NBCn2 (NCBE) lacking the same ETSL did not. NBCn1 and PSD-95 were coimmunoprecipitated in HEK 293 cells, and their interaction did not affect the efficacy of PSD-95 to bind to the NMDA receptor NR2A. PSD-95 has negligible effects on intracellular pH changes mediated by NBCn1 in HEK 293 cells and Xenopus oocytes. However, PSD-95 increased an ionic conductance produced by NBCn1 channel-like activity. This increase was abolished by NBCn1-ΔETSL or by the peptide containing the last 15 amino acids of NBCn1. CONCLUSION: Our data suggest that PSD-95 interacts with NBCn1 and increases its channel-like activity while negligibly affecting Na/HCO(3) cotransport. The possibility that the channel-like activity occurs via an intermolecular cavity of multimeric NBCn1 proteins is discussed.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Bicarbonato de Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Ligação Competitiva , Região CA3 Hipocampal/citologia , Espinhas Dendríticas/metabolismo , Proteína 4 Homóloga a Disks-Large , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Domínios PDZ , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Xenopus
2.
Biochim Biophys Acta ; 1789(11-12): 691-701, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19660582

RESUMO

Studies indicate that the 19S proteasome functions in the epigenetic regulation of transcription. We have shown that as in yeast, components of the 19S proteasome are crucial for regulating inducible histone acetylation events in mammalian cells. The 19S ATPase Sug1 binds to histone acetyltransferases and to acetylated histone H3 and, in the absence of Sug1, histone H3 acetylation is dramatically decreased at mammalian promoters. Research in yeast further indicates that the ortholog of Sug1, Rpt6, is a link between ubiquitination of histone H2B and H3 lysine 4 trimethylation (H3K4me3). To characterize the role that the 19S proteasome plays in regulating additional activating modifications, we examined the methylation and ubiquitination status of histones at inducible mammalian genes. We find that Sug1 is crucial for regulating histone H3K4me3 and H3R17me2 at the cytokine inducible MHC-II and CIITA promoters. In the absence of Sug1, histone H3K4me3 and H3R17me2 are dramatically decreased, but the loss of Sug1 has no significant effect on H3K36me3 or H2BK120ub. Our observation that a subunit of hCompass interacts with additional activating histone modifying enzymes, but fails to bind the CIITA promoter in the absence of Sug1, strongly implicates Sug1 in recruiting enzyme complexes responsible for initiating mammalian transcription.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Interferon gama/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Antígenos HLA-DR/genética , Cadeias alfa de HLA-DR , Células HeLa , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Lisina/metabolismo , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinação
3.
Epigenetics Chromatin ; 3(1): 5, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20181089

RESUMO

BACKGROUND: Studies indicate that the 19S proteasome contributes to chromatin reorganization, independent of the role the proteasome plays in protein degradation. We have previously shown that components of the 19S proteasome are crucial for regulating inducible histone activation events in mammalian cells. The 19S ATPase Sug1 binds to histone-remodeling enzymes, and in the absence of Sug1, a subset of activating epigenetic modifications including histone H3 acetylation, H3 lysine 4 trimethylation and H3 arginine 17 dimethylation are inhibited at cytokine-inducible major histocompatibilty complex (MHC)-II and class II transactivator (CIITA) promoters, implicating Sug1 in events required to initiate mammalian transcription. RESULTS: Our previous studies indicate that H3 lysine 4 trimethylation at cytokine-inducible MHC-II and CIITA promoters is dependent on proteolytic-independent functions of 19S ATPases. In this report, we show that multiple common subunits of the mixed lineage leukemia (MLL)/complex of proteins associated with Set I (COMPASS) complexes bind to the inducible MHC-II and CIITA promoters; that overexpressing a single common MLL/COMPASS subunit significantly enhances promoter activity and MHC-II HLA-DRA expression; and that these common subunits are important for H3 lysine 4 trimethylation at MHC-II and CIITA promoters. In addition, we show that H3 lysine 27 trimethylation, which is inversely correlated with H3 lysine 4 trimethylation, is significantly elevated in the presence of diminished 19S ATPase Sug1. CONCLUSION: Taken together, these experiments suggest that the 19S proteasome plays a crucial role in the initial reorganization of events enabling the relaxation of the repressive chromatin structure surrounding inducible promoters.

4.
Mol Cell Biol ; 28(19): 5837-50, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18662994

RESUMO

Recent studies have made evident the fact that the 19S regulatory component of the proteasome has functions that extend beyond degradation, particularly in the regulation of transcription. Although 19S ATPases facilitate chromatin remodeling and acetylation events in yeast (Saccharomyces cerevisiae), it is unclear if they play similar roles in mammalian cells. We have recently shown that the 19S ATPase Sug1 positively regulates the transcription of the critical inflammatory gene for major histocompatibility complex class II (MHC-II) by stabilizing enhanceosome assembly at the proximal promoter. We now show that Sug1 is crucial for regulating histone H3 acetylation at the MHC-II proximal promoter. Sug1 binds to acetylated histone H3 and, in the absence of Sug1, histone H3 acetylation is dramatically decreased at the proximal promoter, with a preferential loss of acetylation at H3 lysine 18. Sug1 also binds to the MHC-II histone acetyltransferase CREB-binding protein (CBP) and is critical for the recruitment of CBP to the MHC-II proximal promoter. Our current study strongly implicates the 19S ATPase Sug1 in modifying histones to initiate MHC-II transcription and provides novel insights into the role of the proteasome in the regulation of mammalian transcription.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína de Ligação a CREB/metabolismo , Montagem e Desmontagem da Cromatina , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Proteínas com Domínio LIM , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA