Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 286(47): 40464-76, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21969376

RESUMO

The γ-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-γ/PKC-δ and ERK/MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was incorporated into the second extracellular loop. An increase in plasma membrane of HA-rGAT-1 as well as of rGAT-1 was observed when both HA-GAT-1-transduced astrocytes and rGAT-1-overexpressing astrocytes were treated with BDNF. The effect of BDNF results from inhibition of dynamin/clathrin-dependent constitutive internalization of GAT-1 rather than from facilitation of the monensin-sensitive recycling of GAT-1 molecules back to the plasma membrane. We therefore conclude that BDNF enhances the time span of GAT-1 molecules at the plasma membrane of astrocytes. BDNF may thus play an active role in the clearance of GABA from synaptic and extrasynaptic sites and in this way influence neuronal excitability.


Assuntos
Astrócitos/citologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Receptor trkB/metabolismo
2.
Mol Cell Biol ; 24(7): 2710-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15024061

RESUMO

This study describes a novel mechanism of regulation of the high-affinity Na(+)-dependent adenosine transporter (CNT2) via the activation of A(1) adenosine receptors (A(1)R). This regulation is mediated by the activation of ATP-sensitive K(+) (K(ATP)) channels. The high-affinity Na(+)-dependent adenosine transporter CNT2 and A(1)R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (-)-N(6)-(2-phenylisopropyl)adenosine is fully inhibited by K(ATP) channel blockers and mimicked by a K(ATP) channel opener. A(1)R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A(1)R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A(1)R, CNT2, and K(ATP) channels. These results also suggest that the activation of K(ATP) channels under metabolic stress can be mediated by the activation of A(1)R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for K(ATP) channels.


Assuntos
Adenosina/análogos & derivados , Proteínas de Membrana Transportadoras/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Nucleosídeos de Purina/metabolismo , Receptor A1 de Adenosina/metabolismo , Adenosina/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Bloqueadores dos Canais de Potássio/metabolismo , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar
3.
Biochem J ; 395(2): 337-44, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16390326

RESUMO

CNT2 (concentrative nucleoside cotransporter) is a plasma membrane high-affinity Na+-coupled adenosine transporter, also localized in intracellular structures. This transporter protein may play additional roles other than nucleoside salvage, since it has recently been shown to be under purinergic control via K(ATP) channels, by a mechanism that does not seem to involve changes in its subcellular localization. In an attempt to identify the agents that promote CNT2 trafficking, bile acids were found to increase CNT2-related transport activity in a K(ATP) channel-independent manner in both Fao hepatoma and rat liver parenchymal cells. A maximum effect was recorded after treatment with hydrophilic anions such as TCA (taurocholate). However, this effect did not involve changes in the amount of CNT2 protein, it was instead associated with a subcellular redistribution of CNT2, resulting in an accumulation of the transporter at the plasma membrane. This was deduced from subcellular fractionation studies, biotinylation of plasma membrane proteins and subsequent CNT2 detection in streptavidin precipitates and in vivo confocal microscopic analysis of the distribution of a YFP (yellow fluorescent protein)-CNT2 construct. The induction of CNT2 translocation, triggered by TCA, was inhibited by wortmannin, dibutyryl-AMPc, PD98059 and colchicine, thus suggesting the involvement of the PI3K/ERK (phosphoinositide 3-kinase/extracellular-signal related kinase) pathway in microtubule-dependent activation of recombinant CNT2. These are novel effects of bile-acid physiology and provide the first evidence for short-term regulation of CNT2 translocation into and from the plasma membrane.


Assuntos
Ácidos e Sais Biliares/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Ácido Taurocólico/farmacologia , Fatores de Tempo , Regulação para Cima/genética
5.
Neuron ; 67(5): 834-46, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20826314

RESUMO

Upon entry into the central nervous system (CNS), serum insulin-like growth factor-1 (IGF-I) modulates neuronal growth, survival, and excitability. Yet mechanisms that trigger IGF-I entry across the blood-brain barrier remain unclear. We show that neuronal activity elicited by electrical, sensory, or behavioral stimulation increases IGF-I input in activated regions. Entrance of serum IGF-I is triggered by diffusible messengers (i.e., ATP, arachidonic acid derivatives) released during neurovascular coupling. These messengers stimulate matrix metalloproteinase-9, leading to cleavage of the IGF binding protein-3 (IGFBP-3). Cleavage of IGFBP-3 allows the passage of serum IGF-I into the CNS through an interaction with the endothelial transporter lipoprotein related receptor 1. Activity-dependent entrance of serum IGF-I into the CNS may help to explain disparate observations such as proneurogenic effects of epilepsy, rehabilitatory effects of neural stimulation, and modulatory effects of blood flow on brain activity.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Biofísica/métodos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/ultraestrutura , Temperatura Corporal/efeitos dos fármacos , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Técnicas de Cocultura , Digoxigenina/metabolismo , Interações Medicamentosas , Estimulação Elétrica/métodos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Ensaio de Imunoadsorção Enzimática/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Lateralidade Funcional , Ácido Glutâmico/farmacologia , Humanos , Imunoprecipitação/métodos , Fator de Crescimento Insulin-Like I/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microdiálise/métodos , Microscopia Imunoeletrônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor IGF Tipo 1/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Fatores de Tempo , Vibrissas/inervação
6.
Exp Cell Res ; 281(1): 77-85, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12441131

RESUMO

The Na+-dependent nucleoside transporter CNT1 has been identified in a caveolin-enriched plasma membrane fraction (CEF), in transcytotic endosomes, and in canalicular membranes isolated from quiescent rat liver in which the transporter appears to be biologically active. CNT1 was also detected, albeit in small amounts, in the early/sorting endosomes. Plasma membrane preparations enriched in basolateral markers showed Na+-dependent nucleoside transport activity that is mostly, if not exclusively, accounted for by CNT2, a transporter protein which was not detected in CEF nor in the endosomal fractions. These data are consistent with different localization and trafficking pathways of the two isoforms in hepatocytes. CNT1 is the first transporter which is reported to follow the transcytotic pathway to be inserted on the apical side of liver parenchymal cells.


Assuntos
Membrana Celular/metabolismo , Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nucleosídeos de Purina/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Western Blotting , Cavéolas/metabolismo , Endossomos/metabolismo , Imunofluorescência , Hepatócitos/citologia , Imuno-Histoquímica , Microscopia Eletrônica , Plasmídeos , Isoformas de Proteínas/metabolismo , Ratos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA