Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
2.
Anal Chem ; 95(7): 3596-3605, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36749686

RESUMO

Understanding the membrane dynamics of complex systems is essential to follow their function. As molecules in membranes can be in a rigid or mobile state depending on external (temperature, pressure) or internal (pH, domains, etc.) conditions, we propose an in-depth examination of NMR methods to filter highly mobile molecular parts from others that are in more restricted environments. We have thus developed a quantitative magic-angle spinning (MAS) 13C NMR approach coupled with cross-polarization (CP) and/or Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) on rigid and fluid unlabeled model membranes. We demonstrate that INEPT can detect only very mobile lipid headgroups in gel (solid-ordered) phases; the remaining rigid parts are only detected with CP. A direct correlation is established between the normalized line intensity as obtained by CP and the C-H (C-D) order parameters measured by wide-line 2H NMR or extracted from molecular dynamics: ICP/IDPeq ≈ 5|SCH|, indicating that when the order is greater than 0.2-0.3 (maximum value of 0.5 for chain CH2), only rigid parts can be filtered and detected using CP techniques. In very fluid (liquid-disordered) membranes, where there are many more active motions, both INEPT and CP detect resonances, with, however, a clear propensity of each technique to detect mobile and restricted molecular parts, respectively. Interestingly, the 13C NMR chemical shift of lipid hydrocarbon chains can be used to monitor order-disorder phase transitions and calculate the fraction of chain defects (rotamers) and the part of the transition enthalpy due to bond rotations (6-7 kJ·mol-1 for dimyristolphosphatidylcholine, DMPC). Cholesterol-containing membranes (liquid-ordered phases) can be dynamically contrasted as the rigid-body sterol is mainly detected by the CP technique, with a contact time of 1 ms, and the phospholipid by INEPT. Our work opens up a straightforward, robust, and cost-effective route for the determination of membrane dynamics by taking advantage of well-resolved conventional 13C NMR experiments without the need of isotopic labeling.

3.
Langmuir ; 39(8): 3072-3082, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36793207

RESUMO

It has been shown that the use of conformationally pH-switchable lipids can drastically enhance the cytosolic drug delivery of lipid vesicles. Understanding the process by which the pH-switchable lipids disturb the lipid assembly of nanoparticles and trigger the cargo release is crucial to optimize the rational design of pH-switchable lipids. Here, we gather morphological observations (FF-SEM, Cryo-TEM, AFM, confocal microscopy), physicochemical characterization (DLS, ELS), as well as phase behavior studies (DSC, 2H NMR, Langmuir isotherm, and MAS NMR) to propose a mechanism of pH-triggered membrane destabilization. We demonstrate that the switchable lipids are homogeneously incorporated with other co-lipids (DSPC, cholesterol, and DSPE-PEG2000) and promote a liquid-ordered phase insensitive to temperature variation. Upon acidification, the protonation of the switchable lipids triggers a conformational switch altering the self-assembly properties of lipid nanoparticles. These modifications do not lead to a phase separation of the lipid membrane; however, they cause fluctuations and local defects, which result in morphological changes of the lipid vesicles. These changes are proposed to affect the permeability of vesicle membrane, triggering the release of the cargo encapsulated in the lipid vesicles (LVs). Our results confirm that pH-triggered release does not require major morphological changes, but can result from small defects affecting the lipid membrane permeability.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos , Lipídeos/química , Fenômenos Químicos , Conformação Molecular , Permeabilidade
4.
Phys Chem Chem Phys ; 25(24): 16273-16287, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37305972

RESUMO

Archaeal membrane lipids have specific structures that allow Archaea to withstand extreme conditions of temperature and pressure. In order to understand the molecular parameters that govern such resistance, the synthesis of 1,2-di-O-phytanyl-sn-glycero-3-phosphoinositol (DoPhPI), an archaeal lipid derived from myo-inositol, is reported. Benzyl protected myo-inositol was first prepared and then transformed to phosphodiester derivatives using a phosphoramidite based-coupling reaction with archaeol. Aqueous dispersions of DoPhPI alone or mixed with DoPhPC can be extruded and form small unilamellar vesicles, as detected by DLS. Neutron, SAXS, and solid-state NMR demonstrated that the water dispersions could form a lamellar phase at room temperature that then evolves into cubic and hexagonal phases with increasing temperature. Phytanyl chains were also found to impart remarkable and nearly constant dynamics to the bilayer over wide temperature ranges. All these new properties of archaeal lipids are proposed as providers of plasticity and thus means for the archaeal membrane to resist extreme conditions.


Assuntos
Archaea , Lipídeos de Membrana , Archaea/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Lipídeos de Membrana/química , Inositol
5.
Anal Chem ; 92(10): 6858-6868, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32324380

RESUMO

The human nuclear membrane is composed of a double bilayer, the inner membrane being linked to the protein lamina network and the outer nuclear membrane continuous with the endoplasmic reticulum. Nuclear membranes can form large invaginations inside the nucleus; their specific roles still remain unknown. Although much of the protein identification has been determined, their lipid composition remains largely undetermined. In order to understand the mechanical and dynamic properties of nuclear membranes we investigated their lipid composition by two quantitative methods, namely, 31P and 1H multidimensional NMR and mass spectrometry, using internal standards. We also developed a nondetergent nuclei extraction protocol allowing to produce milligram quantities of nuclear membrane lipids. We found that the nuclear membrane lipid extract is composed of a complex mixture of phospholipids with different phosphatidylcholine species present in large amounts. Negatively charged lipids, with elevated amounts of phosphatidylinositol (PI), were also present. Mass spectrometry confirmed the phospholipid composition and provided further information on acyl-chain length and unsaturation. Lipid chain lengths ranged between 30 and 38 carbon atoms (two chains summed up) with a high proportion of 34 carbon atom length for most species. PI lipids have high amounts of chain lengths with 36-38 carbons. Independent of the chain length unsaturations were highly elevated with one to two double bonds per lipid species.


Assuntos
Núcleo Celular/química , Lipídeos de Membrana/análise , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
6.
PLoS Pathog ; 14(1): e1006814, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29320578

RESUMO

Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 µM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects.


Assuntos
Bicamadas Lipídicas , Macrolídeos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Úlcera de Buruli/microbiologia , Adesão Celular/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium ulcerans/química , Mycobacterium ulcerans/efeitos dos fármacos , Mycobacterium ulcerans/ultraestrutura , Tensoativos/farmacologia
7.
Nature ; 501(7467): 430-4, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965626

RESUMO

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ß-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.


Assuntos
Apolipoproteínas/sangue , Apolipoproteínas/metabolismo , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Trypanosoma brucei gambiense/fisiologia , África , Animais , Animais Geneticamente Modificados , Apolipoproteína L1 , Apolipoproteínas/antagonistas & inibidores , Apolipoproteínas/toxicidade , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína Proteases/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipoproteínas HDL/antagonistas & inibidores , Lipoproteínas HDL/química , Lipoproteínas HDL/toxicidade , Parasitos/patogenicidade , Parasitos/fisiologia , Estrutura Secundária de Proteína , Soro/química , Soro/parasitologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei gambiense/patogenicidade , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
8.
Chemphyschem ; 18(19): 2651-2657, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28573816

RESUMO

Nanodiscs offer a very promising tool to incorporate membrane proteins into native-like lipid bilayers and an alternative to liposomes to maintain protein functions and protein-lipid interactions in a soluble nanoscale object. The activity of the incorporated membrane protein appears to be correlated to its dynamics in the lipid bilayer and by protein-lipid interactions. These two parameters depend on the lipid internal dynamics surrounded by the lipid-encircling discoidal scaffold protein that might differ from more unrestricted lipid bilayers observed in vesicles or cellular extracts. A solid-state NMR spectroscopy investigation of lipid internal dynamics and thermotropism in nanodiscs is reported. The gel-to-fluid phase transition is almost abolished for nanodiscs, which maintain lipid fluid properties for a large temperature range. The addition of cholesterol allows fine-tuning of the internal bilayer dynamics by increasing chain ordering. Increased site-specific order parameters along the acyl chain reflect a higher internal ordering in nanodiscs compared with liposomes at room temperature; this is induced by the scaffold protein, which restricts lipid diffusion in the nanodisc area.


Assuntos
Lipídeos/química , Nanoestruturas/química , Termodinâmica , Deutério , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química
9.
Anal Chem ; 88(24): 12470-12478, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193050

RESUMO

Gaining insight into intermolecular interactions between multiple species is possible at an atomic level by looking at different parameters using different NMR techniques. In the specific case of the astringency sensation, in which at least three molecular species are involved, different NMR techniques combined with dynamic light scattering and molecular modeling contribute to decipher the role of each component in the interaction mode and to assess the thermodynamic parameters governing this complex interaction. The binding process between a saliva peptide, a polyphenol, and polysaccharides was monitored by following 1H chemical shift variations, changes in NMR peak areas, and size of the formed complex. These NMR experiments deliver a complete picture of the association pathway, assessed by dynamic light scattering and molecular dynamics simulations: all of the data collected converge toward a comprehensive mode of interaction in which sugars indirectly play a role in astringency by sequestering part of the polyphenols, reducing their effective concentration to bind saliva proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Polifenóis/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Açúcares/metabolismo , Catequina/análogos & derivados , Catequina/metabolismo , Difusão Dinâmica da Luz , Glucose/metabolismo , Humanos , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Vinho/análise
10.
Langmuir ; 32(2): 401-10, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26700689

RESUMO

Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers.


Assuntos
Células Artificiais/química , Ácidos Graxos/química , Bicamadas Lipídicas/química , Células Artificiais/ultraestrutura , Guanidina/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Transição de Fase
11.
Soft Matter ; 12(20): 4516-20, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27146355

RESUMO

The ramification of cationic amphiphiles on their unsaturated lipid chains is readily achieved by using the thiol-ene click reaction triggering the formation of an inverted hexagonal phase (HII). The new ramified cationic lipids exhibit different bio-activities (transfection, toxicity) including higher transfection efficacies on 16HBE 14o-cell lines.


Assuntos
Alcenos/química , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Compostos de Sulfidrila/química , Transfecção , Linhagem Celular , Química Click
12.
Angew Chem Int Ed Engl ; 55(43): 13475-13479, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27659782

RESUMO

Encapsulating biological materials in lipid vesicles is of interest for mimicking cells; however, except in some particular cases, such processes do not occur spontaneously. Herein, we developed a simple and robust method for encapsulating proteins in fatty acid vesicles in high yields. Fatty acid based, membrane-free coacervates spontaneously sequester proteins and can reversibly form membranous vesicles upon varying the pH value, the precrowding feature in coacervates allowing for protein encapsulation within vesicles. We then produced enzyme-enriched vesicles and show that enzymatic reactions can occur in these micrometric capsules. This work could be of interest in the field of synthetic biology for building microreactors.

13.
Biochim Biophys Acta ; 1838(1 Pt B): 287-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036080

RESUMO

The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles.


Assuntos
Antígenos de Plantas/química , Bicamadas Lipídicas/química , Lipossomos/química , Proteínas de Plantas/química , Borracha/química , Alérgenos/química , Hevea/química , Látex/química , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
14.
Biochim Biophys Acta ; 1828(6): 1494-502, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23473737

RESUMO

The human ether-a-go-go-related gene (hERG) voltage-gated K(+) channels are located in heart cell membranes and hold a unique selectivity filter (SF) amino acid sequence (SVGFG) as compared to other K(+) channels (TVGYG). The hERG provokes the acquired long QT syndrome (ALQTS) when blocked, as a side effect of drugs, leading to arrhythmia or heart failure. Its pore domain - including the SF - is believed to be a cardiotoxic drug target. In this study combining solution and solid-state NMR experiments we examine the structure and function of hERG's L(622)-K(638) segment which comprises the SF, as well as its role in the ALQTS using reported active drugs. We first show that the SF segment is unstructured in solution with and without K(+) ions in its surroundings, consistent with the expected flexibility required for the change between the different channel conductive states predicted by computational studies. We also show that the SF segment has the potential to perturb the membrane, but that the presence of K(+) ions cancels this interaction. The SF moiety appears to be a possible target for promethazine in the ALQTS mechanism, but not as much for bepridil, cetirizine, diphenhydramine and fluvoxamine. The membrane affinity of the SF is also affected by the presence of drugs which also perturb model DMPC-based membranes. These results thus suggest that the membrane could play a role in the ALQTS by promoting the access to transmembrane or intracellular targets on the hERG channel, or perturbing the lipid-protein synergy.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Síndrome do QT Longo/metabolismo , Espectroscopia de Ressonância Magnética , Potássio/metabolismo , Bepridil/toxicidade , Cetirizina/toxicidade , Dimiristoilfosfatidilcolina/metabolismo , Difenidramina/toxicidade , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/genética , Fluvoxamina/toxicidade , Humanos , Ativação do Canal Iônico , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/genética , Membranas Artificiais , Fosfatidilcolinas/metabolismo , Prometazina/toxicidade , Conformação Proteica , Relação Estrutura-Atividade
15.
Biochim Biophys Acta ; 1828(6): 1457-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23462641

RESUMO

Cell penetrating peptides (CPPs) are usually short, highly cationic peptides that are capable of crossing the cell membrane and transport cargos of varied size and nature in cells by energy- and receptor-independent mechanisms. An additional potential is the newly discovered anti-tumor activity of certain CPPs, including RW16 (RRWRRWWRRWWRRWRR) which is derived from penetratin and is investigated here. The use of CPPs in therapeutics, diagnosis and potential application as anti-tumor agents increases the necessity of understanding their mode of action, a subject yet not totally understood. With this in mind, the membrane interaction and perturbation mechanisms of RW16 with both zwitterionic and anionic lipid model systems (used as representative models of healthy vs tumor cells) were investigated using a large panoply of biophysical techniques. It was shown that RW16 autoassociates and that its oligomerization state highly influences its membrane interaction. Overall a stronger association and perturbation of anionic membranes was observed, especially in the presence of oligomeric peptide, when compared to zwitterionic ones. This might explain, at least in part, the anti-tumor activity and so the selective interaction with cancer cells whose membranes have been shown to be especially anionic. Hydrophobic contacts between the peptide and lipids were also shown to play an important role in the interaction. That probably results from the tryptophan insertion into the fatty acid lipid area following a peptide flip after the first electrostatic recognition. A model is presented that reflects the ensemble of results.


Assuntos
Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Lipídeos de Membrana/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipossomos , Testes de Sensibilidade Microbiana , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Triptofano
16.
FASEB J ; 27(10): 4316-26, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23839934

RESUMO

Hepatitis B surface antigen (HBsAg) subvirus particles produced from yeast share immunological determinants with mature viruses, which enable the use of HBsAg as a potent antigen for human vaccination. Because the intimate structure of such pseudoviral particles is still a matter of debate, we investigated the robustness of the external barrier and its structure and dynamics using the noninvasive solid-state NMR technique. This barrier is made of 60% proteins and 40% lipids. Phospholipids represent 83% of all lipids, and chain unsaturation is of 72%. Dynamics was reported by embedding small amounts of deuterium chain-labeled unsaturated phospholipid into the external barrier of entire subviral particles, while controlling particle integrity by cryoelectron microscopy, tomography, and light scattering. Variable preparation modes were used, from mild incubation of small unilamellar vesicles to very stringent incorporation with freeze-drying. A lipid bilayer structure of 4- to 5-nm thickness was evidenced with a higher rigidity than that of synthetic phospholipid vesicles, but nonetheless reflecting a fluid membrane (50-52% of maximum rigidity) in agreement with the elevated unsaturation content. The HBsAg particles of 20- to 24-nm diameter were surprisingly found resistant to lyophilization, in such a way that trapped water inside particles could not be removed. These dual properties bring more insight into the mode of action of native subviral particles and their recombinant counterparts used in vaccines.


Assuntos
Membrana Celular , Microscopia Crioeletrônica , Liofilização , Antígenos de Superfície da Hepatite B/metabolismo , Espectroscopia de Ressonância Magnética , Antígenos de Superfície da Hepatite B/genética , Pichia/metabolismo
17.
Langmuir ; 30(49): 14717-24, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25420203

RESUMO

Oleic acid vesicles represent good models of membrane protocells that could have existed in prebiotic times. Here, we report the formation, growth polymorphism, and dynamics of oleic acid spherical vesicles (1-10 µm), stable elongated vesicles (>50 µm length; 1-3 µm diameter), and chains of vesicles (pearl necklaces, >50 µm length; 1-3 µm diameter) in the presence of aminopropyl triethoxysilane and guanidine hydrochloride. These vesicles exhibit a remarkable behavior with temperature: spherical vesicles only are observed when keeping the sample at 4 °C for 2 h, and self-aggregated spherical vesicles occur upon freezing/unfreezing (-20/20 °C) samples. Rather homogeneous elongated vesicles are reformed upon heating samples at 80 °C. The phenomenon is reversible through cycles of freezing/heating or cooling/heating of the same sample. Deuterium NMR evidences a chain packing rigidity similar to that of phospholipid bilayers in cellular biomembranes. We expect these bilayered vesicles to be surrounded by a layer of aminosilane oligomers, offering a variant model for membrane protocells.


Assuntos
Aminas/química , Grafite/química , Modelos Moleculares , Ácido Oleico/química , Silanos/química , Vesículas Transportadoras/química , Simulação de Dinâmica Molecular
18.
Langmuir ; 30(18): 5075-81, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24758608

RESUMO

There is strong demand in the field of NMR for simple oriented lipid supramolecular assemblies, the constituents of which can be fully deuterated, for specifically studying the structure of host protonated molecules (e.g., peptides, proteins...) in a lipid environment. Also, small-angle neutron scattering (SANS) in fully deuterated oriented systems is powerful for gaining information on protonated host molecules in a lipid environment by using the contrast proton/deuterium method. Here we report on a very simple system made of fatty acids (dodecanoic and tetradecanoic) and ethanolamine in water. All components of this system can be obtained commercially as perdeuterated. Depending on the molar ratio and the concentration, the system self-assembles at room temperature into a direct hexagonal phase that is oriented by moderate magnetic fields of a few tesla. The orientation occurs within the magnetic field upon cooling the system from its higher-temperature isotropic phase: the lipid cylinders of the hexagonal phase become oriented parallel to the field. This is shown by solid-state NMR using either perdeuterated fatty acids or ethanolamine. This system bears strong interest for studying host protonated molecules but also in materials chemistry for building oriented solid materials.


Assuntos
Ácidos Graxos/química , Espectroscopia de Ressonância Magnética/métodos , Etanolamina/química
19.
Langmuir ; 30(19): 5518-26, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24787144

RESUMO

Sensory properties of red wine tannins are bound to complex interactions between saliva proteins, membranes taste receptors of the oral cavity, and lipids or proteins from the human diet. Whereas astringency has been widely studied in terms of tannin-saliva protein colloidal complexes, little is known about interactions between tannins and lipids and their implications in the taste of wine. This study deals with tannin-lipid interactions, by mimicking both oral cavity membranes by micrometric size liposomes and lipid droplets in food by nanometric isotropic bicelles. Deuterium and phosphorus solid-state NMR demonstrated the membrane hydrophobic core disordering promoted by catechin (C), epicatechin (EC), and epigallocatechin gallate (EGCG), the latter appearing more efficient. C and EGCG destabilize isotropic bicelles and convert them into an inverted hexagonal phase. Tannins are shown to be located at the membrane interface and stabilize the lamellar phases. These newly found properties point out the importance of lipids in the complex interactions that happen in the mouth during organoleptic feeling when ingesting tannins.


Assuntos
Lipossomos/química , Taninos/química , Paladar/fisiologia , Vinho/análise , Catequina/análogos & derivados , Catequina/química , Humanos , Espectroscopia de Ressonância Magnética
20.
Biophys Chem ; 307: 107178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277878

RESUMO

Tannins are amphiphilic molecules, often polymeric, which can be generally described as a core containing hydrophobic aromatic rings surrounded by hydroxyl groups. They have been known for millennia and are part of human culture. They are ubiquitous in nature and are best known in the context of wine and tea tasting and food cultures. However, they are also very useful for human health, as they are powerful antioxidants capable of combating the constant aggressions of everyday life. However, their mode of action is only just beginning to be understood. This review, using physicochemical concepts, attempts to summarize current knowledge and present an integrated view of the complex relationship between tannins, proteins and lipids, in the context of wine drinking while eating. There are many thermodynamic equilibria governing the interactions between tannins, saliva proteins, lipid droplets in food, membranes and the taste receptors embedded in them. Taste sensations can be explained using these multiple equilibria: for example, astringency (dry mouth) can be explained by the strong binding of tannin micelles to the proline-rich proteins of saliva, suppressing their lubricating action on the palate. In the presence of lipid droplets in food, the equilibrium is shifted towards tannin-lipid complexes, a situation that reduces the astringency perceived when consuming a tannic wine with fatty foods, the so-called "camembert effect". Tannins bind preferentially to taste receptors located in mouth membranes, but can also fluidify lipids in the non-keratinized mucous membranes of the mouth, which can impair the functioning of taste receptors there. Cholesterol, present in large quantities in keratinized mucous membranes, stiffens them and thus prevents tannins from disrupting the conduction of information through other taste receptors. As tannins assemble and disassemble depending on whether they are in contact with proteins, lipids or taste receptors, a perspective on their potential use in the context of neurodegenerative diseases where fibrillation is a key phenomenon will also be discussed.


Assuntos
Doenças Neurodegenerativas , Vinho , Humanos , Taninos/química , Taninos/metabolismo , Vinho/análise , Percepção Gustatória , Adstringentes/química , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA