Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(38): 7872-7883, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37718898

RESUMO

A model for photoassociation of ultracold atoms and molecules is presented and applied to the case of 39K and 23Na39K bosonic particles. The model relies on the assumption that photoassociation is dominated by long-range atom-molecule interactions well outside the chemical bond region. The frequency of the photoassociation laser is chosen close to a bound-bound rovibronic transition from the X1Σ+ ground state toward the metastable b3Π lowest excited state of 23Na39K, allowing us to neglect any other excitation, which could hinder the photoassociation detection. The energy level structure of the long-range 39K···23Na39K excited super-dimer is computed in the space-fixed frame by solving coupled-channel equations, involving the coupling between the 23Na39K internal rotation and the mechanical rotation of the super-dimer complex. A quite rich structure is obtained, and the corresponding photoassociation rates are presented. Other possible photoassociation transitions are discussed in the context of the proposed model.

2.
J Chem Phys ; 155(24): 241101, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34972371

RESUMO

The predissociation spectrum of the Cl-35(H2) complex is measured between 450 and 800 cm-1 in a multipole radiofrequency ion trap at different temperatures using the FELIX infrared free electron laser. Above a certain temperature, the removal of the Cl-(p-H2) para nuclear spin isomer by ligand exchange to the Cl-(o-H2) ortho isomer is suppressed effectively, thereby making it possible to detect the spectrum of this more weakly bound complex. At trap temperatures of 30.5 and 41.5 K, we detect two vibrational bands of Cl-(p-H2) at 510(1) and 606(1) cm-1. Using accurate quantum calculations, these bands are assigned to transitions to the inter-monomer vibrational modes (v1,v2 l2 ) = (0, 20) and (1, 20), respectively.

3.
Phys Rev Lett ; 122(12): 123401, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978081

RESUMO

We have developed an approach to continuously load ultracold ^{85}Rb_{2} vibrational ground-state molecules into a crossed optical dipole trap from a magneto-optical trap. The technique relies on a single high-power light beam with a broad spectrum superimposed onto a narrow peak at an energy of about 9400 cm^{-1}. This single laser source performs all the required steps: the short-range photoassociation creating ground-state molecules after radiative emission, the cooling of the molecular vibrational population down to the lowest vibrational level v_{X}=0, and the optical trapping of these molecules. Furthermore, we probe by depletion spectroscopy and determine that 75% of the v_{X}=0 ground-state molecules are in the three lowest rotational levels J_{X}=0, 1, 2. The lifetime of the ultracold molecules in the optical dipole trap is limited to about 70 ms by off-resonant light scattering. The proposed technique opens perspectives for the formation of new molecular species in the ultracold domain, which are not yet accessible by well-established approaches.

4.
Phys Rev Lett ; 121(6): 063201, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141648

RESUMO

We propose a new method to produce an electric and magnetic dipolar gas of ultracold dysprosium atoms. The pair of nearly degenerate energy levels of opposite parity, at 17513.33 cm^{-1} with electronic angular momentum J=10, and at 17514.50 cm^{-1} with J=9, can be mixed with an external electric field, thus inducing an electric dipole moment in the laboratory frame. For field amplitudes relevant to current-day experiments, i.e., an electric field of 5 kV/cm, we predict a large magnetic dipole moment up to 13 Bohr magnetons, and sizeable electric dipole moment up to 0.22 D. When a magnetic field is present, we show that the induced electric dipole moment is strongly dependent on the angle between the fields. The lifetime of the field-mixed levels is found in the millisecond range, thus allowing for suitable experimental detection and manipulation.

5.
Phys Rev Lett ; 117(21): 213002, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27911516

RESUMO

The direct photodissociation of trapped ^{85}Rb_{2}^{+} (rubidium) molecular ions by the cooling light for the ^{85}Rb magneto-optical trap (MOT) is studied, both experimentally and theoretically. Vibrationally excited Rb_{2}^{+} ions are created by photoionization of Rb_{2} molecules formed photoassociatively in the Rb MOT and are trapped in a modified spherical Paul trap. The decay rate of the trapped Rb_{2}^{+} ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is observed. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

6.
Phys Rev Lett ; 117(12): 123001, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689267

RESUMO

The existence of negative ions in interstellar clouds has been associated for several decades with the process of radiative electron attachment. In this Letter, we report compelling evidence supporting the fact that the radiative attachment of a low-energy electron is inefficient to form the carbon chain anions CN^{-}, C_{3}N^{-}, and C_{5}N^{-} detected in interstellar clouds. The validity of the approach is confirmed by good agreement with experimental data obtained for the inverse photodetachment process, which represents the major cause of anion destruction in interstellar space. As a consequence, we suggest alternative models that could explain the formation of anions.

7.
Phys Rev Lett ; 116(20): 205303, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27258875

RESUMO

We report the successful production of an ultracold sample of absolute ground-state ^{23}Na^{87}Rb molecules. Starting from weakly bound Feshbach molecules formed via magnetoassociation, the lowest rovibrational and hyperfine level of the electronic ground state is populated following a high-efficiency and high-resolution two-photon Raman process. The high-purity absolute ground-state samples have up to 8000 molecules and densities of over 10^{11} cm^{-3}. By measuring the Stark shifts induced by external electric fields, we determined the permanent electric dipole moment of the absolute ground-state ^{23}Na^{87}Rb and demonstrated the capability of inducing an effective dipole moment over 1 D. Bimolecular reaction between ground-state ^{23}Na^{87}Rb molecules is endothermic, but we still observed a rather fast decay of the molecular sample. Our results pave the way toward investigation of ultracold molecular collisions in a fully controlled manner and possibly to quantum gases of ultracold bosonic molecules with strong dipolar interactions.

8.
J Chem Phys ; 144(20): 204310, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250309

RESUMO

We report on the observation of three RbCs satellite bands in the blue and green ranges of the visible spectrum. Absorption measurements are performed using all-sapphire cell filled with a mixture of Rb and Cs. We compare high resolution absorption spectrum of Rb-Cs vapor mixture with pure Rb and Cs vapor spectra from the literature. After detailed analysis, the new satellite bands of RbCs molecule at 418.3 nm, 468.3, and 527.5 nm are identified. The origin of these bands is discussed by direct comparison with difference potentials derived from quantum chemistry calculations of RbCs potential energy curves. These bands originate from the lower Rydberg states of the RbCs molecule. This study thus provides further insight into photoassociation of lower Rydberg molecular states, approximately between Cs(7s) + Rb(5s) and Cs(6s) + Rb(6p) asymptotes, in ultracold gases.

9.
Phys Rev Lett ; 115(7): 073201, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26317720

RESUMO

The creation of ultracold molecules is currently limited to diatomic species. In this Letter, we present a theoretical description of the photoassociation of ultracold atoms and molecules to create ultracold excited triatomic molecules, thus being a novel example of a light-assisted ultracold chemical reaction. The calculation of the photoassociation rate of an ultracold Cs_{2} molecule in its rovibrational ground state with an ultracold Cs atom at frequencies close to its resonant excitation is reported, based on the solution of the quantum dynamics involving the atom-molecule long-range interactions and assuming a model potential for the short-range physics. The rate for the formation of excited Cs_{3} molecules is predicted to be comparable with currently observed atom-atom photoassociation rates. We formulate an experimental proposal to observe this process relying on the available techniques of optical lattices and standard photoassociation spectroscopy.

10.
J Chem Phys ; 142(23): 234309, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26093561

RESUMO

A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN(-), C4H(-), and C2H(-). Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We have shown that the contribution of the indirect pathway to the formation of CN(-) is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10(-16) cm(3)/s for CN(-), 7 × 10(-17) cm(3)/s for C2H(-), and 2 × 10(-16) cm(3)/s for C4H(-). These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.

11.
Phys Rev Lett ; 113(20): 205301, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25432045

RESUMO

We produce ultracold dense trapped samples of ^{87}Rb^{133}Cs molecules in their rovibrational ground state, with full nuclear hyperfine state control, by stimulated Raman adiabatic passage (STIRAP) with efficiencies of 90%. We observe the onset of hyperfine-changing collisions when the magnetic field is ramped so that the molecules are no longer in the hyperfine ground state. A strong quadratic shift of the transition frequencies as a function of applied electric field shows the strongly dipolar character of the RbCs ground-state molecule. Our results open up the prospect of realizing stable bosonic dipolar quantum gases with ultracold molecules.

12.
J Chem Phys ; 137(23): 234305, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23267484

RESUMO

Using the multipolar expansion of the electrostatic energy, we characterized the asymptotic interactions between an oxygen atom O((3)P) and an oxygen molecule O(2)((3)Σ(g)(-)), both in their electronic ground state. We calculated the interaction energy induced by the permanent electric quadrupoles of O and O(2) and the van der Waals energy. On one hand, we determined the 27 electronic potential energy surfaces including spin-orbit connected to the O((3)P) + O(2)((3)Σ(g)(-)) dissociation limit of the O-O(2) complex. On the other hand, we computed the potential energy curves characterizing the interaction between O((3)P) and a rotating O(2)((3)Σ(g)(-)) molecule in its lowest vibrational level. Such curves are found adiabatic to a good approximation, namely, they are only weakly coupled to each other. These results represent a first step for modeling the spectroscopy of ozone bound levels close to the dissociation limit, as well as the low energy collisions between O and O(2) thus complementing the knowledge relevant for the ozone formation mechanism.

13.
Phys Rev Lett ; 107(24): 243202, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22242998

RESUMO

We present a combined experimental and theoretical study of cold reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. We observe rich chemical dynamics which are interpreted in terms of nonadiabatic and radiative charge exchange as well as radiative molecule formation using high-level electronic structure calculations. We study the role of light-assisted processes and show that the efficiency of the dominant chemical pathways is considerably enhanced in excited reaction channels. Our results illustrate the importance of radiative and nonradiative processes for the cold chemistry occurring in ion-atom hybrid traps.

14.
Phys Chem Chem Phys ; 13(42): 19106-13, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21901201

RESUMO

We investigate theoretically the long-range electrostatic interactions between a ground-state homonuclear alkali-metal dimer and an excited alkali-metal atom taking into account its fine-structure. The interaction involves the combination of first-order quadrupole-quadrupole and second-order dipole-dipole effects. Depending on the considered species, the atomic spin-orbit may be comparable to the atom-molecule electrostatic energy and to the dimer rotational structure. Here we extend our general description in the framework of the second-order degenerate perturbation theory [M. Lepers and O. Dulieu, Eur. Phys. J. D, 2011] to various regimes induced by the magnitude of the atomic spin-orbit. A complex dynamics of the atom-molecule may take place at large distances, which may have consequences for the search for an universal model of ultracold inelastic collisions as proposed for instance in the study of Z. Idziaszek and P. S. Julienne [Phys. Rev. Lett.104, 2010, 113202].

15.
Phys Chem Chem Phys ; 13(42): 19101-5, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21879056

RESUMO

We investigate collisions of ultracold polar LiCs molecules and ultracold caesium atoms. LiCs molecules are formed in an optical dipole trap by photoassociation of caesium and lithium atoms via the B(1)Π excited state followed by spontaneous emission to the X(1)Σ(+) ground state and the lowest triplet state a(3)Σ(+). The molecules are then stored together with caesium atoms in the same optical trap. Rate coefficients for the loss of molecules induced by collisions with surrounding Cs atoms are measured for molecular ensembles produced via different photoassociation resonances. The results are analyzed in terms of the unitarity limit for the inelastic rates and predictions from the universal model of Idziaszek and Julienne (Phys. Rev. Lett., 2010, 104, 113202).

16.
Phys Chem Chem Phys ; 13(42): 18926-35, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21853182

RESUMO

We perform one- and two-photon high resolution spectroscopy on ultracold samples of RbCs Feshbach molecules with the aim to identify a suitable route for efficient ground-state transfer in the quantum-gas regime to produce quantum gases of dipolar RbCs ground-state molecules. One-photon loss spectroscopy allows us to probe deeply bound rovibrational levels of the mixed excited (A(1)Σ(+)-b(3)Π)0(+) molecular states. Two-photon dark state spectroscopy connects the initial Feshbach state to the rovibronic ground state. We determine the binding energy of the lowest rovibrational level |v'' = 0, J'' = 0> of the X(1)Σ(+) ground state to be D = 3811.5755(16) cm(-1), a 300-fold improvement in accuracy with respect to previous data. We are now in the position to perform stimulated two-photon Raman transfer to the rovibronic ground state.

17.
Nat Chem ; 13(5): 435-440, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33380743

RESUMO

Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants' nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level.

18.
J Chem Phys ; 129(6): 064309, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18715071

RESUMO

The rapid development of experimental techniques to produce ultracold alkali molecules opens the ways to manipulate them and to control their dynamics using external electric fields. A prerequisite quantity for such studies is the knowledge of their static dipole polarizability. In this paper, we computed the variations with internuclear distance and with vibrational index of the static dipole polarizability components of all homonuclear alkali dimers including Fr(2), and of all heteronuclear alkali dimers involving Li to Cs, in their electronic ground state and in their lowest triplet state. We use the same quantum chemistry approach as in our work on dipole moments [Aymar and Dulieu, J. Chem. Phys. 122, 204302 (2005)], based on pseudopotentials for atomic core representation, Gaussian basis sets, and effective potentials for core polarization. Polarizabilities are extracted from electronic energies using the finite-field method. For the heaviest species Rb(2), Cs(2), and Fr(2) and for all heteronuclear alkali dimers, such results are presented for the first time. The accuracy of our results on atomic and molecular static dipole polarizabilities is discussed by comparing our values with the few available experimental data and elaborate calculations. We found that for all alkali pairs, the parallel and perpendicular components of the ground state polarizabilities at the equilibrium distance R(e) scale as (R(e))(3), which can be related to a simple electrostatic model of an ellipsoidal charge distribution. Prospects for possible alignment and orientation effects with these molecules in forthcoming experiments are discussed.

19.
Nat Commun ; 9(1): 4823, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446649

RESUMO

Two-dimensional electronic spectroscopy (2DES) is one of the most powerful spectroscopic techniques with unique sensitivity to couplings, coherence properties and real-time dynamics of a quantum system. While successfully applied to a variety of condensed phase samples, high precision experiments on isolated systems in the gas phase have been so far precluded by insufficient sensitivity. However, such experiments are essential for a precise understanding of fundamental mechanisms and to avoid misinterpretations. Here, we solve this issue by extending 2DES to isolated nanosystems in the gas phase prepared by helium nanodroplet isolation in a molecular beam-type experiment. This approach uniquely provides high flexibility in synthesizing tailored, quantum state-selected model systems of single and many-body character. In a model study of weakly-bound Rb2 and Rb3 molecules we demonstrate the method's unique capacity to elucidate interactions and dynamics in tailored quantum systems, thereby also bridging the gap to experiments in ultracold quantum science.

20.
Phys Chem Chem Phys ; 13(42): 18703-4, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21989765
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA