Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 28(18): 2706-18, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19661922

RESUMO

G protein-coupled receptors (GPCRs) have been found to trigger G protein-independent signalling. However, the regulation of G protein-independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein-independent 5-HT(4) receptor (5-HT(4)R)-operated Src/ERK (extracellular signal-regulated kinase) pathway, but not the G(s) pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor' C-terminus in both human embryonic kidney (HEK)-293 cells and colliculi neurons. This inhibition required two sequences of events: the association of beta-arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C-t domain and the phosphorylation, by GRK5, of beta-arrestin1 (at Ser(412)) bound to the receptor. Phosphorylated beta-arrestin1 in turn prevented activation of Src constitutively bound to 5-HT(4)Rs, a necessary step in receptor-stimulated ERK signalling. This is the first demonstration that beta-arrestin1 phosphorylation by GRK5 regulates G protein-independent signalling.


Assuntos
Arrestinas/biossíntese , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Linhagem Celular , Proteínas de Ligação ao GTP/metabolismo , Humanos , Mutação , Neurônios/metabolismo , Peptídeos/química , Fosforilação , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Serina/química , beta-Arrestinas , Quinases da Família src/metabolismo
2.
J Biol Chem ; 286(12): 9985-97, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21247891

RESUMO

The discovery that class C G protein-coupled receptors (GPCRs) function as obligatory dimeric entities has generated major interest in GPCR oligomerization. Oligomerization now appears to be a common feature among all GPCR classes. However, the functional significance of this process remains unclear because, in vitro, some monomeric GPCRs, such as rhodopsin and ß(2)-adrenergic receptors, activate G proteins. By using wild type and mutant serotonin type 4 receptors (5-HT(4)Rs) (including a 5-HT(4)-RASSL) expressed in COS-7 cells as models of class A GPCRs, we show that activation of one protomer in a dimer was sufficient to stimulate G proteins. However, coupling efficiency was 2 times higher when both protomers were activated. Expression of combinations of 5-HT(4), in which both protomers were able to bind to agonists but only one could couple to G proteins, suggested that upon agonist occupancy, protomers did not independently couple to G proteins but rather that only one G protein was activated. Coupling of a single heterotrimeric G(s) protein to a receptor dimer was further confirmed in vitro, using the purified recombinant WT RASSL 5-HT(4)R obligatory heterodimer. These results, together with previous findings, demonstrate that, differently from class C GPCR dimers, class A GPCR dimers have pleiotropic activation mechanisms.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Mutação , Multimerização Proteica/fisiologia , Receptores 5-HT4 de Serotonina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas Heterotriméricas de Ligação ao GTP/genética , Camundongos , Receptores 5-HT4 de Serotonina/genética
3.
Nat Methods ; 5(8): 673-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18668035

RESUMO

We are creating families of designer G protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (G(s), G(i) and G(q)). We review these advances here to facilitate the use of these powerful and diverse tools.


Assuntos
Engenharia de Proteínas/métodos , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Evolução Molecular , Humanos , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
4.
Biochim Biophys Acta ; 1793(11): 1646-55, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19715731

RESUMO

The 5-HT(7) receptor is the most recently described member of the serotonin receptor family. This receptor is mainly expressed in the thalamus, hypothalamus as well as in the hippocampus and cortex. In the present study, we demonstrate that the mouse 5-hydroxytryptamine 5-HT(7(a)) receptor undergoes post-translational modification by the palmitate, which is covalently attached to the protein through a thioester-type bond. Analysis of protein-bound fatty acids revealed that the 5-HT(7(a)) receptor predominantly contains palmitic acid. Labelling experiments performed in the presence of agonists show that the 5-HT(7(a)) receptor is dynamically palmitoylated in an agonist-dependent manner and that previously synthesized receptors may be subjected to repeated cycles of palmitoylation/depalmitoylation. Mutation analysis revealed that cysteine residues 404 and 438/441 located in the C-terminal receptor domain are the main palmitoylation sites responsible for the attachment of 90% of the receptor-bound palmitate. Analysis of acylation-deficient mutants revealed that non-palmitoylated 5-HT(7(a)) receptors were indistinguishable from the wild-type for their ability to interact with G(s)- and G(12)-proteins after agonist stimulation. However, mutation of the proximal palmitoylation site Cys404-Ser (either alone or in combination with Cys438/441-Ser) significantly increased the agonist-independent, G(s)-mediated constitutive 5-HT(7(a)) receptor activity, while the activation of Galpha(12)-protein was not affected. This demonstrates a functional importance of 5-HT(7(a)) dynamic palmitoylation for the fine tuning of receptor-mediated signaling.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Lipoilação/fisiologia , Receptores de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Camundongos , Ácidos Palmíticos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Receptores de Serotonina/genética
5.
Mol Biol Cell ; 18(6): 1979-91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17377064

RESUMO

The 5-hydroxytryptamine(4) (5-HT(4)) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine(4) receptors (5-HT(4)Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and memory: the extracellular signal-regulated kinase (ERK) pathway. Here, we show that 5-HT(4)R stimulation, in primary neurons, produced a potent but transient activation of the ERK pathway. Surprisingly, this activation was mostly PKA independent. Similarly, using pharmacological, genetic, and molecular tools, we observed that 5-HT(4)Rs in human embryonic kidney 293 cells, activated the ERK pathway in a G(s)/cAMP/PKA-independent manner. We also demonstrated that other classical G proteins (G(q)/G(i)/G(o)) and associated downstream messengers were not implicated in the 5-HT(4)R-activated ERK pathway. The 5-HT(4)R-mediated ERK activation seemed to be dependent on Src tyrosine kinase and yet totally independent of beta-arrestin. Immunocytofluorescence revealed that ERK activation by 5-HT(4)R was restrained to the plasma membrane, whereas p-Src colocalized with the receptor and carried on even after endocytosis. This phenomenon may result from a tight interaction between 5-HT(4)R and p-Src detected by coimmunoprecipitation. Finally, we confirmed that the main route by which 5-HT(4)Rs activate ERKs in neurons was Src dependent. Thus, in addition to classical cAMP/PKA signaling pathways, 5-HT(4)Rs may use ERK pathways to control memory process.


Assuntos
Arrestinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores 5-HT4 de Serotonina/metabolismo , Quinases da Família src/metabolismo , Sequência de Aminoácidos , Animais , Arrestinas/genética , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Proteínas de Ligação ao GTP/genética , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores 5-HT4 de Serotonina/genética , beta-Arrestinas , Quinases da Família src/genética
6.
Mol Pharmacol ; 75(4): 982-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168624

RESUMO

The extended classic ternary complex model predicts that a G protein-coupled receptor (GPCR) exists in only two interconvertible states: an inactive R, and an active R(*). However, different structural active R(*) complexes may exist in addition to a silent inactive R ground state (Rg). Here we demonstrate, in a cellular context, that several R(*) states of 5-hydroxytryptamine-4 (5-HT(4)) receptors involve different side-chain conformational toggle switches. Using site-directed mutagenesis and molecular modeling approaches, we show that the basal constitutive receptor (R(*)basal) results from stabilization of an obligatory double toggle switch (Thr3.36 from inactive g- to active g+ and Trp6.48 from inactive g+ to active t). Mutation of either threonine or tryptophan to alanine resulted in a lowering of the activity of the R(*)basal similar to the Rg. The T3.36A mutation shows that the Thr3.36 toggle switch plays a minor role in the stabilization of R(*) induced by 5-HT (R(*)-5-HT) and BIMU8 (R(*)-BIMU8) and is fully required in the stabilization of R(*) induced by (S)-zacopride, cisapride, and 1-(4-amino-5-chloro-2-methoxyphenyl)-3-(1-butyl-4-piperidinyl)-1-propanone (RS 67333) (R(*)-benzamides). Thus, benzamides stabilize R(*)-benzamides by forming a specific hydrogen bond with Thr3.36 in the active g+ conformation. Conversely, R(*)-BIMU8 was probably the result of a direct conformational transition of Trp6.48 from inactive g+ to active t by hydrogen bonding of this residue to a carboxyl group of BIMU8. We were surprised that the Trp6.48 toggle switch was not necessary for receptor activation by the natural agonist 5-HT. R(*)-5-HT is probably attained through other routes of activation. Thus, different conformational arrangements occur during stabilization of R(*)basal, R(*)-5-HT, R(*)-benzamides, and R(*)-BIMU8.


Assuntos
Receptores 5-HT4 de Serotonina/química , Agonistas do Receptor 5-HT4 de Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Sequência de Aminoácidos/genética , Animais , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Camundongos , Dados de Sequência Molecular , Conformação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Receptores 5-HT4 de Serotonina/fisiologia
7.
Bioorg Med Chem ; 17(6): 2607-22, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19261477

RESUMO

Based on the definition of a 5-HT(4) receptor antagonist pharmacophore, a series of pyrrolo[1,2-a]thieno[3,2-e] and pyrrolo[1,2-a]thieno[2,3-e] pyrazine derivatives were designed, prepared, and evaluated to determine the properties necessary for high-affinity binding to 5-HT(4) receptors. The compounds were synthesized by substituting the chlorine atom of the pyrazine ring with various N-alkyl-4-piperidinylmethanolates. They were evaluated in binding assays with [(3)H]GR113808 (1) as the 5-HT(4) receptor radioligand. The affinity values (K(i) or inhibition percentages) were affected by both the substituent on the aromatic ring and the substituent on the lateral piperidine chain. A methyl group on the tricyclic ring produced a marked increase in affinity while an N-propyl or N-butyl group gave compounds with nanomolar affinities. Among the most potent ligands, 34d was selected for further pharmacological studies and evaluated in vivo. This compound acts as an antagonist/weak partial agonist in COS-7 cells stably expressing the 5-HT(4(a)) receptor and is of great interest as a peripheral antinociceptive agent.


Assuntos
Pirazinas/síntese química , Pirazinas/farmacologia , Antagonistas do Receptor 5-HT4 de Serotonina , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/farmacologia , Animais , Células COS , Chlorocebus aethiops , Humanos , Indóis/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirazinas/metabolismo , Ensaio Radioligante , Antagonistas da Serotonina/metabolismo , Sulfonamidas/metabolismo
8.
Neuropharmacology ; 55(6): 922-31, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18603269

RESUMO

Twenty years ago, we started the characterization of a 5-HT receptor coupled to cAMP production in neurons. This receptor obviously had a different pharmacology to the other 5-HT receptors described at that time, i.e. the 5-HT(1), 5-HT(2), 5-HT(3) receptors. We proposed to name it the 5-HT(4) receptor. Nowadays, 5-HT(4) receptors are one of the most studied GPCRs belonging to the "rhodopsin" family. Thanks to the existence of a great variety of ligands with inverse agonist, partial agonist, agonist and antagonist profiles, the pharmacological and physiological properties of this receptor are beginning to emerge. Although some 5-HT(4) partial agonists have been on the market for gastro-intestinal pathologies, 5-HT(4) receptor drugs have still to be commercialized for brain disorders. However, since 5-HT(4) receptors have recognized effects on memory, depression and feeding in animal models, there is still hope for a therapeutic destiny of this interesting target in brain disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Receptores de Serotonina , Serotoninérgicos/farmacologia , Animais , AMP Cíclico/metabolismo , História do Século XX , História do Século XXI , Humanos , Modelos Moleculares , Receptores de Serotonina/genética , Receptores de Serotonina/história , Receptores de Serotonina/metabolismo
9.
Neuropharmacology ; 53(4): 563-73, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17692343

RESUMO

Recent evidence suggests that 5-hydroxytryptamine (5-HT)(4) receptor activity enhances cognition and provides neuroprotection. Here we report the effects of VRX-03011, a novel partial 5-HT(4) agonist, that is both potent (K(i) approximately 30 nM) and highly selective (K(i) > 5 microM for all other 5-HT receptors tested). In separate experiments, rats received VRX-03011 (0.1-10 mg/kg i.p.) 30 min prior to spontaneous alternation testing in a no-delay or a 30-s delay condition. VRX-03011 (1, 5 and 10 mg/kg, but not 0.1 mg/kg) significantly enhanced delayed spontaneous alternation performance while none of the doses enhanced performance in the no-delay test. VRX-03011 (1 and 5 mg/kg) concomitantly enhanced hippocampal acetylcholine output and delayed spontaneous alternation scores compared to that of vehicle controls, but had no effect on hippocampal acetylcholine release under a resting condition. Moreover, suboptimal doses of VRX-03011 and the acetylcholinesterase inhibitor galanthamine combined to enhance memory. VRX-03011 also regulated amyloid precursor protein (APP) metabolism by inducing a concentration-dependent increase in the non-amyloidogenic soluble form of APP (sAPPalpha) with an EC(50) approximately 1--10 nM. VRX-03011 had no effect on contractile properties in guinea pig ileum or colon preparations with an EC(50) > 10 microM and did not alter rat intestinal transit at doses up to 10 mg/kg. These findings suggest that VRX-03011 may represent a novel treatment for Alzheimer's disease that reduces cognitive impairments and provides neuroprotection without gastrointestinal side effects.


Assuntos
Acetilcolina/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Piridonas/farmacologia , Receptores 5-HT4 de Serotonina/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Tiofenos/farmacologia , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Ligantes , Memória/efeitos dos fármacos , Modelos Animais , Ratos , Receptores 5-HT4 de Serotonina/efeitos dos fármacos , Receptores 5-HT4 de Serotonina/genética , Transfecção
10.
J Neurosci ; 25(34): 7821-30, 2005 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16120784

RESUMO

The neurotransmitter serotonin (5-HT) plays an important role in the regulation of multiple events in the CNS. We demonstrated recently a coupling between the 5-HT4 receptor and the heterotrimeric G13-protein resulting in RhoA-dependent neurite retraction and cell rounding (Ponimaskin et al., 2002). In the present study, we identified G12 as an additional G-protein that can be activated by another member of serotonin receptors, the 5-HT7 receptor. Expression of 5-HT7 receptor induced constitutive and agonist-dependent activation of a serum response element-mediated gene transcription through G12-mediated activation of small GTPases. In NIH3T3 cells, activation of the 5-HT7 receptor induced filopodia formation via a Cdc42-mediated pathway correlating with RhoA-dependent cell rounding. In mouse hippocampal neurons, activation of the endogenous 5-HT7 receptors significantly increased neurite length, whereas stimulation of 5-HT4 receptors led to a decrease in the length and number of neurites. These data demonstrate distinct roles for 5-HT7R/G12 and 5-HT4R/G13 signaling pathways in neurite outgrowth and retraction, suggesting that serotonin plays a prominent role in regulating the neuronal cytoarchitecture in addition to its classical role as neurotransmitter.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Camundongos , Células NIH 3T3 , Neuritos/fisiologia , Neurônios/citologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/fisiologia , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/fisiologia
11.
J Neurosci ; 24(2): 412-9, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14724239

RESUMO

To study the functions of 5-HT4 receptors, a null mutation was engineered in the corresponding gene. 5-HT4 receptor knock-out mice displayed normal feeding and motor behaviors in baseline conditions but abnormal feeding and locomotor behavior in response to stress and novelty. Specifically, stress-induced hypophagia and novelty-induced exploratory activity were attenuated in the knock-out mice. In addition, pentylenetetrazol-induced convulsive responses were enhanced in the knock-out mice, suggesting an increase in neuronal network excitability. These results provide the first example of a genetic deficit that disrupts the ability of stress to reduce feeding and body weight and suggest that 5-HT4 receptors may be involved in stress-induced anorexia and seizure susceptibility.


Assuntos
Receptores 5-HT4 de Serotonina/fisiologia , Convulsões/etiologia , Estresse Fisiológico/complicações , Animais , Comportamento Animal , Peso Corporal , Convulsivantes , Ingestão de Alimentos , Meio Ambiente , Marcação de Genes , Locomoção , Camundongos , Camundongos Knockout , Rede Nervosa/fisiopatologia , Pentilenotetrazol , Receptores 5-HT4 de Serotonina/genética , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
12.
Pharmacol Ther ; 103(3): 203-21, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15464590

RESUMO

G protein-coupled receptors (GPCR) interact not only with heterotrimeric G proteins but also with accessory proteins called GPCR interacting proteins (GIP). These proteins have important functions. They are implicated in GPCR targeting to specific cellular compartments, in their assembling into large functional complexes called "receptosomes," in their trafficking to and from the plasma membrane, and in the fine-tuning of their signaling properties. There are several types of GIPs. Some are transmembrane proteins such as another GPCR (homodimerization and heterodimerization), ionic channels, ionotropic receptors, and single transmembrane proteins. The latter is implicated in the fine-tuning of receptor pharmacology or signaling. Other GIPs are soluble proteins interacting mainly with the "magic" C-terminal tail. Among them, PDZ domain-containing proteins are the most abundant. They generally, but not always, interact with the extreme C-terminal domain of GPCRs. Some GIPs interact with specific sequences of the C-terminal such as the Homer binding sequence (-PPxxFR-), the dopamine receptor interacting protein (DRIP) binding sequence (-FxxxFxxxF-), etc. Finally, only few GIPs have been found thus far to interact with the third intracellular loop of GPCRs. The future will tell us if this situation is only due to technical reasons.


Assuntos
Proteínas de Transporte/metabolismo , Complexos Multiproteicos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
13.
Int Rev Cytol ; 212: 63-132, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11804040

RESUMO

The G protein-coupled receptors (GPCRs) are the most numerous and the most diverse type of receptors (1-5% of the complete invertebrate and vertebrate genomes). They transduce messages as different as odorants, nucleotides, nucleosides, peptides, lipids, and proteins. There are at least eight families of GPCRs that show no sequence similarities and that use different domains to bind ligands and activate a similar set of G proteins. Homo- and heterodimerization of GPCRs seem to be the rule, and in some cases an absolute requirement, for activation. There are about 100 orphan GPCRs in the human genome which will be used to find new message molecules. Mutations of GPCRs are responsible for a wide range of genetic diseases. The importance of GPCRs in physiological processes is illustrated by the fact that they are the target of the majority of therapeutical drugs and drugs of abuse.


Assuntos
Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Células Eucarióticas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Membrana Celular/ultraestrutura , Células Eucarióticas/ultraestrutura , Proteínas de Ligação ao GTP/genética , Humanos , Mutação/genética , Filogenia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/genética , Receptores de Superfície Celular/genética
14.
FEBS Lett ; 546(1): 65-72, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12829238

RESUMO

All cell types express a great variety of G protein-coupled receptors (GPCRs) that are coupled to only a limited set of G proteins. This disposition favors cross-talk between transduction pathways. However, GPCRs are organized into functional units. They promote specificity and thus avoid unsuitable cross-talk. New methodologies (mostly yeast two-hybrid screens and proteomics) have been used to discover more than 50 GPCR-associated proteins that are involved in building these units. In addition, these protein networks participate in the trafficking, targeting, signaling, fine-tuning and allosteric regulation of GPCRs. To date, proteins that interact with the GPCR C-terminus are the most abundant and are the focus of this review.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação Alostérica , Animais , Proteínas de Ligação ao GTP/química , Humanos , Modelos Biológicos , Estrutura Terciária de Proteína , Receptor Cross-Talk , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
15.
Eur J Neurosci ; 3(10): 928-939, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-12106250

RESUMO

The release of arachidonic acid (ArA) metabolites from mouse neurons and astrocytes in primary culture has been studied in response to ionomycin or glutamate stimulation. Cells were preincubated with [3H]ArA for 24 h and the radioactivity released was examined by HPLC. In striatal, cortical and hippocampal neurons, glutamate and ionomycin strongly stimulated the release of ArA, but neither prostaglandins (PGs) nor hydroxyeicosatetraenoic acids (HETEs) could be detected. If they were released, these latter compounds represented < 0.02% of the amount of ArA. In contrast, in astrocyte cultures, ionomycin (but not glutamate) strongly stimulated the release of PGs and HETEs as well as ArA. Reversed- and straight-phase HPLC analysis revealed the presence of PGD2, PGE2, PGF2alpha, 12-hydroxyheptadeca-5,8,10-trienoic acid (HHT) and HETEs (15-HETE, 11-HETE and 5-HETE). Indomethacin inhibited the release of PGs and HHT, but also that of 11- and 15-HETE, indicating that these two HETEs may be produced through the cyclooxygenase pathway. Metabolism of [3H]ArA was also examined in cellular homogenates. Although > 50% of the [3H]ArA was metabolized to PGF2alpha, PGE2, PGD2, HHT, 15- and 11-HETE in cultured astrocyte homogenates, no [3H]ArA metabolism could be detected in cultured striatal neuron homogenates. Moreover, neuronal homogenates did not inhibit the metabolism of [3H]ArA observed in either astrocyte or platelet homogenates. These results indicate that central neurons in primary culture possess very low lipoxygenase and cyclooxygenase activities. They emphasize the need to identify the cellular source of ArA metabolites in the brain, particularly when considering the multiple new messenger roles proposed for these molecules, such as that of retrograde messengers involved in synaptic plasticity phenomena.

16.
Biol Proced Online ; 4: 94-104, 2002 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-12734563

RESUMO

There is accumulating evidence that membrane-bound receptors interact with many intracellular proteins. Multiprotein complexes associated with ionotropic receptors have been extensively characterized, but the identification of proteins interacting with G protein-coupled receptors (GPCRs) has so far only been achieved in a piecemeal fashion, focusing on one or two protein species. We describe a method based on peptide affinity chromatography, two-dimensional electrophoresis, mass spectrometry and immunoblotting to identify the components of multiprotein complexes interacting directly or indirectly with intracellular domains of GPCRs or, more generally, any other membrane-bound receptor. Using this global approach, we have characterized multiprotein complexes that bind to the carboxy-terminal tail of the 5-hydroxytryptamine type 2C receptor and are important for its subcellular localization in CNS cells (Bécamel et al., EMBO J., 21(10): 2332, 2002).

17.
Curr Opin Drug Discov Devel ; 7(5): 649-57, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15503867

RESUMO

G protein-coupled receptors (GPCRs) are transmembrane molecules that, on interaction with G proteins upon ligand binding, can associate with a large variety of transmembrane or soluble proteins, termed 'GPCR-interacting proteins' (GIPs). Some special transmembrane GIPs are themselves GPCRs that form homo- or heterodimers, while other transmembrane GIPs are ionic channels, ionotropic receptors and single transmembrane proteins that control GPCR pharmacology and trafficking. Most soluble GIPs interact with the C-termini of GPCRs and often physically link GPCRs to large protein networks, called 'receptosomes', that include ionic channels, protein kinases, small G proteins, cytoskeletal proteins and adhesion molecules. Here, we review the nature and functions of some of these networks, such as the glutamate and serotonin receptosomes, and focus on the fine-tuning of GPCR signaling by GIPs. Finally, we discuss the possibilities for developing new therapeutic drugs capable of modulating GPCR signaling by disrupting or reinforcing specific GPCR-GIP interactions.


Assuntos
Desenho de Fármacos , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Endossomos/química , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Proteínas de Ligação ao GTP/química , Humanos , Receptores Acoplados a Proteínas G/química , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/tendências
18.
J Med Chem ; 46(1): 138-47, 2003 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-12502367

RESUMO

A series of benzo[h][1,6]naphthyridine and azepino[3,2-c]quinoline derivatives were prepared and evaluated to determine the necessary requirements for high affinity on the 5-HT(4) receptors and high selectivity versus other receptors. The compounds were synthesized by substituting the chlorine atom of benzonaphthyridines and azepinoquinolines with various N-alkyl-4-piperidinylmethanolates. They were evaluated in binding assays with [(3)H]GR 113808 as the 5-HT(4) receptor radioligand. The affinity values (K(i) or inhibition percentages) depended upon the substituent on the aromatic ring on one hand and the substituent on the lateral piperidine chain on the other hand. A chlorine atom produced a marked drop in activity while a N-propyl or N-butyl group gave compounds with nanomolar affinities (1 < K(i) < 10 nM). Among the most potent ligands (3a, 4a, 5a), 4a was selected on the basis of its high affinity and selectivity for pharmacological screening and was evaluated in vivo in specific tests. This compound reveals itself as an antagonist/low partial agonist in the COS-7 cells stably expressing the 5-HT(4(a)) receptor. Derivative 4a also showed in vivo potent analgesic activity in the writhing test at very low doses.


Assuntos
Naftiridinas/síntese química , Quinolinas/síntese química , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Animais , Comportamento Animal/efeitos dos fármacos , Células COS , Chlorocebus aethiops , AMP Cíclico/biossíntese , Cobaias , Dose Letal Mediana , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Naftiridinas/química , Naftiridinas/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Ensaio Radioligante , Receptores de Serotonina/metabolismo , Receptores 5-HT4 de Serotonina , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/síntese química , Agonistas do Receptor de Serotonina/química , Agonistas do Receptor de Serotonina/farmacologia , Relação Estrutura-Atividade , Testes de Toxicidade Aguda
19.
Brain Res ; 1511: 65-72, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23148949

RESUMO

G protein-coupled receptors (GPCRs) can activate simultaneously multiple signaling pathways upon agonist binding. The combined use of engineered GPCRs, such as the receptors activated solely by synthetic ligands (RASSLs), and of biased ligands that activate only one pathway at a time might help deciphering the physiological role of each G protein signaling. In order to find serotonin type 4 receptor (5-HT4R) biased ligands, we analyzed the ability of several compounds to activate the Gs and G(q/11) pathways in COS-7 cells that transiently express wild type 5-HT4R, the 5-HT4R-D(100)A mutant (known also as 5-HT4-RASSL, or Rs1) or the 5-HT4R-T(104)A mutant, which modifies agonist-induced 5-HT4R activation. This analysis allowed completing the pharmacological profile of the two mutant 5-HT4Rs, but we did not find any biased ligand for the mutant receptors. Conversely, we identified the first biased agonists for wild type 5-HT4R. Indeed, RS 67333 and prucalopride acted as partial agonists to induce cAMP accumulation, but as antagonists on inositol phosphate production. Moreover, they showed very different antagonist potencies that could be exploited to study the activation of the G(s) pathway, with or without concomitant block of G(q/11) signaling. This article is part of a Special Issue entitled Optogenetics (7th BRES).


Assuntos
Ligantes , Receptores 5-HT4 de Serotonina/genética , Receptores 5-HT4 de Serotonina/metabolismo , Animais , Chlorocebus aethiops , AMP Cíclico/metabolismo , Fosfatos de Inositol/metabolismo , Mutação/genética , Serotoninérgicos/farmacologia , Transfecção
20.
ACS Chem Neurosci ; 4(1): 130-40, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23336052

RESUMO

In addition to the amyloidogenic pathway, amyloid precursor protein (APP) can be cleaved by α-secretases, producing soluble and neuroprotective APP alpha (sAPPα) (nonamyloidogenic pathway) and thus preventing the generation of pathogenic amyloid-ß. However, the mechanisms regulating APP cleavage by α-secretases remain poorly understood. Here, we showed that expression of serotonin type 4 receptors (5-HT(4)Rs) constitutively (without agonist stimulation) induced APP cleavage by the α-secretase ADAM10 and the release of neuroprotective sAPPα in HEK-293 cells and cortical neurons. This effect was independent of cAMP production. Interestingly, we demonstrated that 5-HT(4) receptors physically interacted with the mature form of ADAM10. Stimulation of 5-HT(4) receptors by an agonist further increased sAPPα secretion, and this effect was mediated by cAMP/Epac signaling. These findings describe a new mechanism whereby a GPCR constitutively stimulates the cleavage of APP by α-secretase and promotes the nonamyloidogenic pathway of APP processing.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Receptores 5-HT4 de Serotonina/fisiologia , Proteína ADAM10 , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Benzofuranos/farmacologia , Córtex Cerebral/citologia , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Fármacos Neuroprotetores/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA