Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482770

RESUMO

Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (phoN/phoC) and phoD-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.


Assuntos
Microbiota , Solo , Solo/química , Fósforo/análise , Floresta Úmida , Bactérias/genética , Microbiota/genética , Minerais , Monoéster Fosfórico Hidrolases/genética , Microbiologia do Solo
2.
Ecol Appl ; 34(5): e2981, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38738945

RESUMO

Predicting how biological communities assemble in restored ecosystems can assist in conservation efforts, but most research has focused on plants, with relatively little attention paid to soil microbial organisms that plants interact with. Arbuscular mycorrhizal (AM) fungi are an ecologically significant functional group of soil microbes that form mutualistic symbioses with plants and could therefore respond positively to plant community restoration. To evaluate the effects of plant community restoration on AM fungi, we compared AM fungal abundance, species richness, and community composition of five annually cultivated, conventionally managed agricultural fields with paired adjacent retired agricultural fields that had undergone prairie restoration 5-9 years prior to sampling. We hypothesized that restoration stimulates AM fungal abundance and species richness, particularly for disturbance-sensitive taxa, and that gains of new taxa would not displace AM fungal species present prior to restoration due to legacy effects. AM fungal abundance was quantified by measuring soil spore density and root colonization. AM fungal species richness and community composition were determined in soils and plant roots using DNA high-throughput sequencing. Soil spore density was 2.3 times higher in restored prairies compared to agricultural fields, but AM fungal root colonization did not differ between land use types. AM fungal species richness was 2.7 and 1.4 times higher in restored prairies versus agricultural fields for soil and roots, respectively. The abundance of Glomeraceae, a disturbance-tolerant family, decreased by 25% from agricultural to restored prairie soils but did not differ in plant roots. The abundance of Claroideoglomeraceae and Diversisporaceae, both disturbance-sensitive families, was 4.6 and 3.2 times higher in restored prairie versus agricultural soils, respectively. Species turnover was higher than expected relative to a null model, indicating that AM fungal species were gained by replacement. Our findings demonstrate that restoration can promote a relatively rapid increase in the abundance and diversity of soil microbial communities that had been degraded by decades of intensive land use, and community compositional change can be predicted by the disturbance tolerance of soil microbial taxonomic and functional groups.


Assuntos
Pradaria , Micorrizas , Microbiologia do Solo , Micorrizas/fisiologia , Biodiversidade , Simbiose , Recuperação e Remediação Ambiental , Conservação dos Recursos Naturais , Agricultura
3.
Mol Ecol ; 32(12): 3257-3275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896778

RESUMO

Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.


Assuntos
Microbiota , Solo , Solo/química , Metano/metabolismo , Florestas , Genes Bacterianos , Microbiota/genética , Microbiologia do Solo
4.
Ecotoxicol Environ Saf ; 207: 111222, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890950

RESUMO

Sulfometuron-methyl is a broad-spectrum herbicide, used throughout Brazil; however, its environmental impacts in biochar (BC) amended soils is not fully understood. Biochar is known to enhance soil quality but can also have undesired effects such as altering the bioavailability and behavior of herbicides. Microbial communities can degrade herbicides such as sulfometuron-methyl in soils; however, they are known to be affected by BC. Therefore, it is important to understand the tripartite interaction between these factors. This research aimed to evaluate the sorption-desorption and biodegradation of sulfometuron-methyl in Amazonian soils amended with BC, and to assess the effects of the interactions between BC and sulfometuron-methyl on soil bacterial communities. Soil samples were collected from field plots amended with BC at three doses (0, 40 and 80 t ha-1) applied ten years ago. The herbicide sorption and desorption were evaluated using a batch equilibrium method. Mineralization and biodegradation studies were conducted in microcosms incubated with 14C-sulfometuron-methyl for 80 days. Systematic soil sampling, followed by DNA extraction, quantification (qPCR) and 16S rRNA amplicon sequencing were performed. The presence of BC increased the sorption of the herbicide to the soil by 11% (BC40) and 16% (BC80) compared to unamended soil. The presence of BC also affected the degradation of 14C-sulfometuron-methyl, reducing the mineralization rate and increasing the degradation half-life times (DT50) from 36.67 days in unamended soil to 52.11 and 55.45 days in BC40 and BC80 soils, respectively. The herbicide application altered the bacterial communities, affecting abundance and richness, and changing the taxonomic diversity (i.e., some taxa were promoted and other inhibited). A tripartite interaction was found between BC, the herbicide and soil bacterial communities, suggesting that it is important to consider the environmental impact of soil applied herbicides in biochar amended soils.


Assuntos
Biodegradação Ambiental , Herbicidas/análise , Poluentes do Solo/análise , Compostos de Sulfonilureia/análise , Adsorção , Bactérias/metabolismo , Disponibilidade Biológica , Brasil , Carvão Vegetal , RNA Ribossômico 16S/metabolismo , Solo
5.
Int J Phytoremediation ; 23(8): 846-856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397125

RESUMO

Improved knowledge of the ecology of contaminant-degrading organisms is paramount for effective assessment and remediation of aromatic hydrocarbon-impacted sites. DNA stable isotope probing was used herein to identify autochthonous degraders in rhizosphere soil from a hybrid poplar phytoremediation system incubated under semi-field-simulated conditions. High-throughput sequencing of bacterial 16S rRNA and fungal internal transcribed spacer (ITS) rRNA genes in metagenomic samples separated according to nucleic acid buoyant density was used to identify putative toluene degraders. Degrader bacteria were found mainly within the Actinobacteria and Proteobacteria phyla and classified predominantly as Cupriavidus, Rhodococcus, Luteimonas, Burkholderiaceae, Azoarcus, Cellulomonadaceae, and Pseudomonas organisms. Purpureocillium lilacinum and Mortierella alpina fungi were also found to assimilate toluene, while several strains of the fungal poplar endophyte Mortierella elongatus were indirectly implicated as potential degraders. Finally, PICRUSt2 predictive taxonomic functional modeling of 16S rRNA genes was performed to validate successful isolation of stable isotope-labeled DNA in density-resolved samples. Four unique sequences, classified within the Bdellovibrionaceae, Intrasporangiaceae, or Chitinophagaceae families, or within the Sphingobacteriales order were absent from PICRUSt2-generated models and represent potentially novel putative toluene-degrading species. This study illustrates the power of combining stable isotope amendment with advanced metagenomic and bioinformatic techniques to link biodegradation activity with unisolated microorganisms. Novelty statement: This study used emerging molecular biological techniques to identify known and new organisms implicated in aromatic hydrocarbon biodegradation from a field-scale phytoremediation system, including organisms with phyto-specific relevance and having potential for downstream applications (amendment or monitoring) in future and existing systems. Additional novelty in this study comes from the use of taxonomic functional modeling approaches for validation of stable isotope probing techniques. This study provides a basis for expanding existing reference databases of known aromatic hydrocarbon degraders from field-applicable sources and offers technological improvements for future site assessment and management purposes.


Assuntos
Rizosfera , Solo , Biodegradação Ambiental , Fungos/genética , Hypocreales , Isótopos , Mortierella , RNA Ribossômico 16S/genética , Microbiologia do Solo , Tolueno
6.
J Sci Food Agric ; 101(12): 5056-5066, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570760

RESUMO

BACKGROUND: The conversion of arable land to grassland and/or forested land is a common strategy of restoration because the development of plant communities can inhibit the erosion of soil, increase biodiversity and improve associated ecosystem services. The vertical profiles of microbial communities, however, have not been well characterized and their variability after land conversion is not well understood. We assessed the effects of the conversion of arable land (AL) to grassland (GL) and forested land (FL) on bacterial communities as old as 29 years in 0-200-cm profiles of a Chinese Mollisol. RESULTS: The soil in AL has been a stable ecosystem and changes in the assembly of soil microbiomes tended to be larger in the topsoil. The soil properties and microbial biodiversity of arable land were larger following revegetation and reforestation. The conversion caused a more complex coupling among microbes, and negative interactions and average connectivity were stronger in the 0-20-cm layers in GL and in the 20-60-cm layers in FL. The land use dramatically influenced the assembly of the microbial communities more in GL than AL and FL. The bacterial diversity was an important component of soil multinutrient cycling in the profiles and microbial functions were not as affected by changes in land use. CONCLUSION: The spatial variation of the microbiomes provided critical information on below-ground soil ecology and the ability of the soil to provide crucial ecosystem services. © 2021 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Conservação dos Recursos Naturais , Ecossistema , Florestas , Pradaria , Solo/química
7.
Can J Microbiol ; 66(7): 413-433, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32396748

RESUMO

The world's population is expected to grow to almost 10 billion by 2050, placing unprecedented demands on agriculture and natural resources. The risk in food security is also aggravated by climate change and land degradation, which compromise agricultural productivity. In recent years, our understanding of the role of microbial communities on ecosystem functioning, including plant-associated microbes, has advanced considerably. Yet, translating this knowledge into practical agricultural technologies is challenged by the intrinsic complexity of agroecosystems. Here, we review current strategies for plant microbiome manipulation, classifying them into three main pillars: (i) introducing and engineering microbiomes, (ii) breeding and engineering the host plant, and (iii) selecting agricultural practices that enhance resident soil and plant-associated microbial communities. In each of these areas, we analyze current trends in research, as well as research priorities and future perspectives.


Assuntos
Agricultura/métodos , Microbiota , Plantas/microbiologia , Microbiologia do Solo , Agricultura/tendências , Ecossistema , Microbiota/genética , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Plantas/genética , Rizosfera , Solo
8.
Glob Chang Biol ; 25(7): 2310-2324, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951220

RESUMO

Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High-throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long-term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.


Assuntos
Micobioma , Incêndios Florestais , Canadá , Florestas , Territórios do Noroeste , Solo , Taiga
9.
Int J Phytoremediation ; 21(1): 60-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648419

RESUMO

Biodegradation is an important mechanism of action of phytoremediation systems, but performance evaluation is challenging. We applied metagenomic molecular approaches and compound-specific stable carbon isotope analysis to assess biodegradation of toluene in the vadose zone at an urban pilot field system where hybrid poplars were planted to remediate legacy impacts to an underlying shallow fractured bedrock aquifer. Carbon isotope ratios were compared spatio-temporally between toluene dissolved in groundwater and in the vapor phase. Enrichment of 13C from toluene in the vapor phase compared to groundwater provided evidence for biodegradation in the vadose zone. Total bacterial abundance (16S rRNA) and abundance and expression of degradation genes were determined in rhizosphere soil (DNA and RNA) and roots (DNA) using quantitative PCR. Relative abundances of degraders in the rhizosphere were on average higher at greater depths, except for enrichment of PHE-encoding communities that more strongly followed patterns of toluene concentrations detected. Quantification of RMO and PHE gene transcripts supported observations of active aerobic toluene degradation. Finally, spatially-variable numbers of toluene degraders were detected in poplar roots. We present multiple lines of evidence for biodegradation in the vadose zone at this site, contributing to our understanding of mechanisms of action of the phytoremediation system.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Carbono , Isótopos de Carbono , Metagenômica , RNA Ribossômico 16S , Tolueno/análise
10.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374043

RESUMO

Microbial communities in residual slurry left after removal of stored liquid dairy manure have been presumed to increase methane emission during new storage, but these microbes have not been studied. While actual manure storage tanks are filled gradually, pilot- and farm-scale studies on methane emissions from such systems often use a batch approach. In this study, six pilot-scale outdoor storage tanks with (10% and 20%) and without residual slurry were filled (gradually or in batch) with fresh dairy manure, and methane and methanogenic and bacterial communities were studied during 120 days of storage. Regardless of filling type, increased residual slurry levels resulted in higher abundance of methanogens and bacteria after 65 days of storage. However, stronger correlation between methanogen abundance and methane flux was observed in gradually filled tanks. Despite some variations in the diversity of methanogens or bacteria with the presence of residual slurry, core phylotypes were not impacted. In all samples, the phylum Firmicutes predominated (∼57 to 70%) bacteria: >90% were members of ClostridiaMethanocorpusculum dominated (∼57 to 88%) archaeal phylotypes, while Methanosarcina gradually increased with storage time. During peak flux of methane, Methanosarcina was the major player in methane production. The results suggest that increased levels of residual slurry have little impact on the dominant methanogenic or bacterial phylotypes, but large population sizes of these organisms may result in increased methane flux during the initial phases of storage.IMPORTANCE Methane is the major greenhouse gas emitted from stored liquid dairy manure. Residual slurry left after removal of stored manure from tanks has been implicated in increasing methane emissions in new storages, and well-adapted microbial communities in it are the drivers of the increase. Linking methane flux to the abundance, diversity, and activity of microbial communities in stored slurries with different levels of residual slurry can help to improve the mitigation strategy. Mesoscale and lab-scale studies conducted so far on methane flux from manure storage systems used batch-filled tanks, while the actual condition in many farms involves gradual filling. Hence, this study provides important information toward determining levels of residual slurry that result in significant reduction of well-adapted microbial communities prior to storage, thereby reducing methane emissions from manure storage tanks filled under farm conditions.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Gases de Efeito Estufa/metabolismo , Esterco/microbiologia , Metano/metabolismo , Microbiota , Indústria de Laticínios
11.
J Environ Qual ; 47(4): 786-794, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025063

RESUMO

Stored liquid dairy manure is a hotspot for methane (CH) emission, thus effective mitigation strategies are required. We assessed sodium persulfate (NaSO), potassium permanganate (KMnO), and sodium hypochlorite (NaOCl) for impacts on the abundance of microbial communities and CH production in liquid dairy manure. Liquid dairy manure treated with different rates (1, 3, 6, and 9 g or mL L slurry) of these chemicals or their combinations were incubated under anoxic conditions at 22.5 ± 1.3°C for 120 d. Untreated and sodium 2-bromoethanesulfonate (BES)-treated manures were included as negative and positive controls, respectively, whereas sulfuric acid (HSO)-treated manure was used as a reference. Quantitative real-time polymerase chain reaction was used to quantify the abundances of bacteria and methanogens on Days 0, 60, and 120. Headspace CH/CO ratios were used as a proxy to determine CH production. Unlike bacterial abundance, methanogen abundance and CH/CO ratios varied with treatments. Addition of 1 to 9 g L slurry of NaSO and KMnO reduced methanogen abundance (up to ∼28%) and peak CH/CO ratios (up to 92-fold). Except at the lowest rate, chemical combinations also reduced the abundance of methanogens (up to ∼17%) and CH/CO ratios (up to ninefold), although no impacts were observed when 3% NaOCl was used alone. With slurry acidification, the ratios reduced up to twofold, whereas methanogen abundance was unaffected. Results suggest that NaSO and KMnO may offer alternative options to reduce CH emission from stored liquid dairy manure, but this warrants further assessment at larger scales for environmental impacts and characteristics of the treated manure.


Assuntos
Metano/metabolismo , Permanganato de Potássio/farmacologia , Compostos de Sódio/farmacologia , Sulfatos/farmacologia , Bactérias/metabolismo , Indústria de Laticínios , Esterco
12.
Glob Chang Biol ; 22(3): 1244-55, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26491961

RESUMO

Perennial crops can deliver a wide range of ecosystem services compared to annual crops. Some of these benefits are achieved by lengthening the growing season, which increases the period of crop water and nutrient uptake, pointing to a potential role for perennial systems to mitigate soil nitrous oxide (N2 O) emissions. Employing a micrometeorological method, we tested this hypothesis in a 3-year field experiment with a perennial grass-legume mixture and an annual corn monoculture. Given that N2 O emissions are strongly dependent on the method of fertilizer application, two manure application options commonly used by farmers for each crop were studied: injection vs. broadcast application for the perennial; fall vs. spring application for the annual. Across the 3 years, lower N2 O emissions (P < 0.001) were measured for the perennial compared to the annual crop, even though annual N2 O emissions increased tenfold for the perennial after ploughing. The percentage of N2 O lost per unit of fertilizer applied was 3.7, 3.1 and 1.3 times higher for the annual for each consecutive year. Differences in soil organic matter due to the contrasting root systems of these crops are probably a major factor behind the N2 O reduction. We found that a specific manure management practice can lead to increases or reductions in annual N2 O emissions depending on environmental variables. The number of freeze-thaw cycles during winter and the amount of rainfall after fertilization in spring were key factors. Therefore, general manure management recommendations should be avoided because interannual weather variability has the potential to determine if a specific practice is beneficial or detrimental. The lower N2 O emissions of perennial crops deserve further research attention and must be considered in future land-use decisions. Increasing the proportion of perennial crops in agricultural landscapes may provide an overlooked opportunity to regulate N2 O emissions.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Produtos Agrícolas/metabolismo , Monitoramento Ambiental , Fertilizantes/análise , Óxido Nitroso/análise , Clima , Fabaceae/metabolismo , Esterco , Óxido Nitroso/metabolismo , Ontário , Poaceae/metabolismo , Estações do Ano , Solo/química , Zea mays/metabolismo
13.
J Environ Qual ; 45(3): 940-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136161

RESUMO

Ammonia-oxidizing bacteria (AOB) and archaea (AOA) both mediate soil nitrification and may have specialized niches in the soil. Little is understood of how these microorganisms are affected by long-term crop rotation and tillage practices. In this study, we assessed abundance and gene expression of AOB and AOA under two contrasting crop rotations and tillage regimes at a 30-yr-old long-term experiment on a Canadian silt loam soil. Continuous corn ( L.) (CC) was compared with a corn-corn-soybean [ (L.) Merr.]-winter wheat ( L.) rotation under-seeded with red clover ( L.) (RC), with conventional tillage (CT) and no-till (NT) as subplot treatments. Soil sampling was performed during the first corn year at four time points throughout the 2010 season and at three discrete depths (0-5, 5-15, and 15-30 cm). Overall, AOA abundance was found to be more than 10 times that of AOB, although AOA transcriptional activity was below detectable levels across all treatments. Crop rotation had a marginally significant effect on AOB abundance, with 1.3 times as many gene copies under the simpler CC rotation than under the more diverse RC rotation. More pronounced effects of depth on AOB abundance and gene expression were observed under NT versus CT management, and NT supported higher abundances of total archaea and AOA than CT across the growing season. We suggest that AOB may be more functionally important than AOA in this high-input agricultural soil but that NT management can promote enhanced soil archaeal populations.


Assuntos
Amônia/metabolismo , Archaea , Produção Agrícola , Canadá , Nitrificação , Oxirredução , Filogenia , Solo , Microbiologia do Solo
14.
J Environ Qual ; 45(2): 463-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065392

RESUMO

Municipal biosolids (MBs) that are land-applied in North America are known to possess an active microbial population that can include human pathogens. Activated sludge is a hotspot for the accumulation of antibiotics and has been shown to be a selective environment for microorganisms that contain antibiotic resistance genes (ARGs); however, the prevalence of ARGs in MBs is not well characterized. In this study, we enriched the plasmid metagenome from raw sewage sludge and two CP2 MBs, a mesophilic anaerobic digestate and a dewatered digestate, to evaluate the presence of ARGs in mobile genetic elements. The CP2-class biosolids are similar to Class B biosolids in the United States. The CP2 biosolids must meet a microbiological cut off of 2 × 10 colony-forming units (CFU) per dry gram or 100 mL of biosolids. The enriched plasmid DNA was sequenced (Illumina MiSeq). Sequence matching against databases, including the Comprehensive Antibiotic Resistance Database (CARD), MG-RAST, and INTEGRALL, identified potential genes of interest related to ARGs and their ability to transfer. The presence and abundance of different ARGs varied between treatments with heterogeneity observed among the same sample types. The MBs plasmid-enriched metagenomes contained ARGs associated with resistance to a variety of antibiotics, including ß-lactams, rifampicin, quinolone, and tetracycline as well as the detection of extended spectrum ß-lactamase genes. Cultured bacteria from CP2 MBs possessed antibiotic resistances consistent with the MBs metagenome data including multiantibiotic-resistant isolates. The results from this study provide a better understanding of the ARG and MGE profile of the plasmid-enriched metagenome of CP2 MBs.


Assuntos
Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Metagenômica , Humanos , Esgotos/microbiologia
15.
J Environ Qual ; 45(6): 1822-1828, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27898800

RESUMO

A significant need exists to improve our understanding of the extent of greenhouse gas emissions from the storage of livestock manure to both improve the reliability of inventory assessments and the impact of beneficial management practice adoption. Factors affecting the extent and variability of greenhouse gas emissions from stored dairy manure were investigated. Emissions from six slurries stored in clean concrete tanks under identical "warm-season" conditions were monitored consecutively over 173 d (18°C average air temperature). Methane (CH) emissions varied considerably among the manures from 6.3 to 25.9 g m d and accounted for ∼96% of the total CO equivalent greenhouse gas emissions. The duration of the lag period, when methane emissions were near baseline levels, varied from 30 to 90 d from the beginning of storage. As a result, CH emissions were poorly correlated with air temperature prior to the time of peak emissions (i.e., the initial 48 to 108 d of storage) but improved afterward. The air temperature following the time of the peak CH flux and the length of the active methanogenesis period (i.e., when the daily CH emissions ≥ 7.6 g m d) were highly correlated with CH emissions ( = 0.98, < 0.01). Methane conversion factors (MCFs) ranged from 0.08 to 0.52 for the different manures. The MCFs generated from existing CH emission models were correlated ( = 0.68, = 0.02) to MCFs calculated for the active methanogenesis period for manure containing wood bedding. A temperature component was added that improved the accuracy ( = 0.82, < 0.01). This demonstrated that an improved understanding of lag period dynamics will enhance stored dairy manure greenhouse gas emission inventory calculations.


Assuntos
Indústria de Laticínios , Gases de Efeito Estufa/análise , Esterco , Fazendas , Metano , Eliminação de Resíduos , Reprodutibilidade dos Testes
16.
Can J Microbiol ; 66(1): v, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642693
17.
J Environ Qual ; 44(5): 1424-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436260

RESUMO

Livestock manure applications on fields can be a source of contamination in water resources, including groundwater. Although fecal indicators like have often been detected in tile drainage systems, few studies have monitored groundwater at depth after manure treatments, especially at sites with a deep, heterogeneous vadose zone. Our hypothesis was that microbial transport through a thick vadose zone would be limited or nonexistent due to attenuation processes, subsurface thickness, and heterogeneity. This study tested this hypothesis by monitoring concentrations beneath a 12-m-thick vadose zone of coarse, heterogeneous glacial sediments after surface application of liquid swine manure. was detected on all 23 sample dates over the 5-mo period (4 Apr. 2012-13 Aug. 2012), with particularly elevated concentrations 1 wk after application and lasting for 5 wk. Variable low-level concentrations before and after the elevated period suggest remobilization and delayed transport of microorganisms to the water table without additional loadings within the flow field. These findings suggest preferential flow pathways allowing deep infiltration of manure bacteria as well as a continued source of bacteria, with variable retention and travel times, over several months. Preferential flow pathways at this site include soil macropores, depression focused infiltration, and pathways related to subsurface heterogeneity and/or fracture flow through finer-grained diamict beds. Further research is needed to confirm the relative contribution of sources, constrain travel times, and define specific transport pathways.

18.
PLoS One ; 19(1): e0292731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285680

RESUMO

Canine fecal microbiota profiling provides insight into host health and disease. Standardization of methods for fecal sample storage for microbiomics is currently inconclusive, however. This study investigated the effects of homogenization, the preservative RNAlater, room temperature exposure duration, and short-term storage in the fridge prior to freezing on the canine fecal microbiota profile. Within 15 minutes after voiding, samples were left non-homogenized or homogenized and aliquoted, then kept at room temperature (20-22°C) for 0.5, 4, 8, or 24 hours. Homogenized aliquots then had RNAlater added or not. Following room temperature exposure, all aliquots were stored in the fridge (4°C) for 24 hours prior to storing in the freezer (-20°C), or stored directly in the freezer. DNA extraction, PCR amplification, then sequencing were completed on all samples. Alpha diversity (diversity, evenness, and richness), and beta diversity (community membership and structure), and relative abundances of bacterial genera were compared between treatments. Homogenization and RNAlater minimized changes in the microbial communities over time, although minor changes in relative abundances occurred. Non-homogenized samples had more inter-sample variability and greater changes in beta diversity than homogenized samples. Storage of canine fecal samples in the fridge for 24 h prior to storage in the freezer had little effect on the fecal microbiota profile. Our findings suggest that if immediate analysis of fecal samples is not possible, samples should at least be homogenized to preserve the existing microbiota profile.


Assuntos
Microbiota , Animais , Cães , Fezes/microbiologia , Congelamento , Manejo de Espécimes/métodos , Bactérias/genética , Temperatura , RNA Ribossômico 16S/genética
19.
Am J Bot ; 100(9): 1738-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23935113

RESUMO

Bacterial root endophytes reside in a vast number of plant species as part of their root microbiome, with some being shown to positively influence plant growth. Endophyte community structure (species diversity: richness and relative abundances) within the plant is dynamic and is influenced by abiotic and biotic factors such as soil conditions, biogeography, plant species, microbe-microbe interactions and plant-microbe interactions, both at local and larger scales. Plant-growth-promoting bacterial endophytes (PGPBEs) have been identified, but the predictive success at positively influencing plant growth in field conditions has been limited. Concurrent to the development of modern molecular techniques, the goal of predicting an organism's ability to promote plant growth can perhaps be realized by more thorough examination of endophyte community dynamics. This paper reviews the drivers of endophyte community structure relating to plant growth promotion, the mechanisms of plant growth promotion, and the current and future use of molecular techniques to study these communities.


Assuntos
Endófitos/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Plantas/microbiologia , Microbiologia do Solo , Microbiota , Rizosfera , Simbiose
20.
Plants (Basel) ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903877

RESUMO

Cover crops (CCs) were found to improve soil health by increasing plant diversity and ground cover. They may also improve water supply for cash crops by reducing evaporation and increasing soil water storage capacity. However, their influence on plant-associated microbial communities, including symbiotic arbuscular mycorrhizal fungi (AMF), is less well understood. In a corn field trial, we studied the response of AMF to a four-species winter CC, relative to a no-CC control, as well as to two contrasting water supply levels (i.e., drought and irrigated). We measured AMF colonization of corn roots and used Illumina MiSeq sequencing to study the composition and diversity of soil AMF communities at two depths (i.e., 0-10 and 10-20 cm). In this trial, AMF colonization was high (61-97%), and soil AMF communities were represented by 249 amplicon sequence variants (ASVs) belonging to 5 genera and 33 virtual taxa. Glomus, followed by Claroideoglomus and Diversispora (class Glomeromycetes), were the dominant genera. Our results showed interacting effects between CC treatments and water supply levels for most of the measured variables. The percentage of AMF colonization, arbuscules, and vesicles tended to be lower in irrigated than drought sites, with significant differences detected only under no-CC. Similarly, soil AMF phylogenetic composition was affected by water supply only in the no-CC treatment. Changes in the abundance of individual virtual taxa also showed strong interacting effects between CCs, irrigation, and sometimes soil depth, although CC effects were clearer than irrigation effects. An exception to these interactions was soil AMF evenness, which was higher in CC than no-CC, and higher under drought than irrigation. Soil AMF richness was not affected by the applied treatments. Our results suggest that CCs can affect the structure of soil AMF communities and modulate their response to water availability levels, although soil heterogeneity could influence the final outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA