RESUMO
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.
Assuntos
Dopamina , Neurônios Dopaminérgicos , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Vesículas Sinápticas , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos dos fármacosRESUMO
In Parkinson's disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of H2 O2 and reduced glutathione levels. In addition, TH-HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4-dihydroxyphenylacetaldehyde and 5-S-cysteinyl-dopamine and were more susceptible than wild-type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity.
Assuntos
Anfetamina/farmacologia , Catecolaminas/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Estresse Oxidativo , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Dopamina/análogos & derivados , Dopamina/metabolismo , Feminino , Dosagem de Genes , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/genéticaRESUMO
Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.
Assuntos
Dopamina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Gânglios da Base/metabolismo , Biomarcadores , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Deleção de Genes , Expressão Gênica , Humanos , Locomoção , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Nicotina/metabolismo , Nicotina/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Ligação Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
Plasticity of intrinsic neuronal excitability facilitates learning and memory across multiple species, with aberrant modulation of this process being linked to the development of neurological symptoms in models of cognitive aging and Alzheimer's disease. Learning-related increases in intrinsic excitability of neurons occurs in a variety of brain regions, and is generally thought to promote information processing and storage through enhancement of synaptic throughput and induction of synaptic plasticity. Experience-dependent changes in intrinsic neuronal excitability rely on activity-dependent gene expression patterns, which can be influenced by genetic and environmental factors, aging, and disease. Reductions in baseline intrinsic excitability, as well as aberrant plasticity of intrinsic neuronal excitability and in some cases pathological hyperexcitability, have been associated with cognitive deficits in animal models of both normal cognitive aging and Alzheimer's disease. Genetic factors that modulate plasticity of intrinsic excitability likely underlie individual differences in cognitive function and susceptibility to cognitive decline. Thus, targeting molecular mediators that either control baseline intrinsic neuronal excitability, subserve learning-related intrinsic neuronal plasticity, and/or promote resilience may be a promising therapeutic strategy for maintaining cognitive function in aging and disease. In this review, we discuss the complementary relationship between intrinsic excitability and learning, with a particular focus on how this relationship varies as a function of age, disease state, and genetic make-up, and how targeting these factors may help to further elucidate our understanding of the role of intrinsic excitability in cognitive function and cognitive decline.
Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Envelhecimento/genética , Animais , Humanos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologiaRESUMO
N-methyl-D-aspartate receptors (NMDARs) are ion channels comprising tetrameric assemblies of GluN1 and GluN2 receptor subunits that mediate excitatory neurotransmission in the central nervous system. Of the four different GluN2 subunits, the GluN2D subunit-containing NMDARs have been suggested as a target for antiparkinsonian therapy because of their expression pattern in some of the basal ganglia nuclei that show abnormal firing patterns in the parkinsonian state, specifically the subthalamic nucleus (STN). In this study, we demonstrate that blockade of NMDARs altered spike firing in the STN in a male nonhuman primate that had been rendered parkinsonian by treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In accompanying experiments in male rodents, we found that GluN2D-NMDAR expression in the STN was reduced in acutely or chronically dopamine-depleted animals. Taken together, our data suggest that blockade of NMDARs in the STN may be a viable antiparkinsonian strategy, but that the ultimate success of this approach may be complicated by parkinsonism-associated changes in NMDAR expression in the STN.
Assuntos
2-Amino-5-fosfonovalerato/farmacologia , Transtornos Parkinsonianos/enzimologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Núcleo Subtalâmico/enzimologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Potenciais de Ação/fisiologia , Animais , Bovinos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Intoxicação por MPTP , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/patologia , Transmissão Sináptica/fisiologiaRESUMO
Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.
Assuntos
Dopamina/metabolismo , Transtornos Parkinsonianos/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Comportamento Animal , Cromossomos Artificiais Bacterianos , Corpo Estriado/metabolismo , Camundongos , Camundongos Transgênicos , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Proteínas Vesiculares de Transporte de Monoamina/genéticaRESUMO
Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.
RESUMO
The speed and scope of cognitive deterioration in Alzheimer's disease is highly associated with the advancement of tau neurofibrillary lesions across brain networks. We tested whether the rate of tau propagation is a heritable disease trait in a large, well-characterized cohort of genetically divergent mouse strains. Using an AAV-based model system, P301L-mutant human tau (hTau) was introduced into the entorhinal cortex of mice derived from 18 distinct lines. The extent of tau propagation was measured by distinguishing hTau-producing cells from neurons that were recipients of tau transfer. Heritability calculation revealed that 43% of the variability in tau spread was due to genetic variants segregating across background strains. Strain differences in glial markers were also observed, but did not correlate with tau propagation. Identifying unique genetic variants that influence the progression of pathological tau may uncover novel molecular targets to prevent or slow the pace of tau spread and cognitive decline.
RESUMO
There is a pressing need to improve the translational validity of Alzheimer's disease (AD) mouse models. Introducing genetic background diversity in AD mouse models has been proposed as a way to increase validity and enable discovery of previously uncharacterized genetic contributions to AD susceptibility or resilience. However, the extent to which genetic background influences the mouse brain proteome and its perturbation in AD mouse models is unknown. Here we crossed the 5XFAD AD mouse model on a C57BL/6J (B6) inbred background with the DBA/2J (D2) inbred background and analyzed the effects of genetic background variation on the brain proteome in F1 progeny. Both genetic background and 5XFAD transgene insertion strongly affected protein variance in hippocampus and cortex (n=3,368 proteins). Protein co-expression network analysis identified 16 modules of highly co-expressed proteins common across hippocampus and cortex in 5XFAD and non-transgenic mice. Among the modules strongly influenced by genetic background were those related to small molecule metabolism and ion transport. Modules strongly influenced by the 5XFAD transgene were related to lysosome/stress response and neuronal synapse/signaling. The modules with the strongest relationship to human disease-neuronal synapse/signaling and lysosome/stress response-were not significantly influenced by genetic background. However, other modules in 5XFAD that were related to human disease, such as GABA synaptic signaling and mitochondrial membrane modules, were influenced by genetic background. Most disease-related modules were more strongly correlated to AD genotype in hippocampus compared to cortex. Our findings suggest that genetic diversity introduced by crossing B6 and D2 inbred backgrounds influences proteomic changes related to disease in the 5XFAD model, and that proteomic analysis of other genetic backgrounds in transgenic and knock-in AD mouse models is warranted to capture the full range of molecular heterogeneity in genetically diverse models of AD.
RESUMO
Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high energy demand, and broad unmyelinated axonal arborizations. Impairments in the storage of dopamine compound this stress due to cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilizing false fluorescent neurotransmitter 206 (FFN206) to visualize how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabeled dopamine in vesicles isolated from immortalized cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants, and helps maintain the integrity of dopaminergic neurons.
RESUMO
There is an urgent need to improve the translational validity of Alzheimer's disease (AD) mouse models. Introducing genetic background diversity in AD mouse models has been proposed as a way to increase validity and enable the discovery of previously uncharacterized genetic contributions to AD susceptibility or resilience. However, the extent to which genetic background influences the mouse brain proteome and its perturbation in AD mouse models is unknown. In this study, we crossed the 5XFAD AD mouse model on a C57BL/6J (B6) inbred background with the DBA/2J (D2) inbred background and analyzed the effects of genetic background variation on the brain proteome in F1 progeny. Both genetic background and 5XFAD transgene insertion strongly affected protein variance in the hippocampus and cortex (n = 3,368 proteins). Protein co-expression network analysis identified 16 modules of highly co-expressed proteins common across the hippocampus and cortex in 5XFAD and non-transgenic mice. Among the modules strongly influenced by genetic background were those related to small molecule metabolism and ion transport. Modules strongly influenced by the 5XFAD transgene were related to lysosome/stress responses and neuronal synapse/signaling. The modules with the strongest relationship to human disease-neuronal synapse/signaling and lysosome/stress response-were not significantly influenced by genetic background. However, other modules in 5XFAD that were related to human disease, such as GABA synaptic signaling and mitochondrial membrane modules, were influenced by genetic background. Most disease-related modules were more strongly correlated with AD genotype in the hippocampus compared with the cortex. Our findings suggest that the genetic diversity introduced by crossing B6 and D2 inbred backgrounds influences proteomic changes related to disease in the 5XFAD model, and that proteomic analysis of other genetic backgrounds in transgenic and knock-in AD mouse models is warranted to capture the full range of molecular heterogeneity in genetically diverse models of AD.
RESUMO
In human Alzheimer's disease (AD) patients and AD mouse models, both differential pre-disease brain features and differential disease-associated memory decline are observed, suggesting that certain neurological features may protect against AD-related cognitive decline. The combination of these features is known as brain reserve, and understanding the genetic underpinnings of brain reserve may advance AD treatment in genetically diverse human populations. One potential source of brain reserve is brain microstructure, which is genetically influenced and can be measured with diffusion MRI (dMRI). To investigate variation of dMRI metrics in pre-disease-onset, genetically diverse AD mouse models, we utilized a population of genetically distinct AD mice produced by crossing the 5XFAD transgenic mouse model of AD to 3 inbred strains (C57BL/6J, DBA/2J, FVB/NJ) and two wild-derived strains (CAST/EiJ, WSB/EiJ). At 3 months of age, these mice underwent diffusion magnetic resonance imaging (dMRI) to probe neural microanatomy in 83 regions of interest (ROIs). At 5 months of age, these mice underwent contextual fear conditioning (CFC). Strain had a significant effect on dMRI measures in most ROIs tested, while far fewer effects of sex, sex*strain interactions, or strain*sex*5XFAD genotype interactions were observed. A main effect of 5XFAD genotype was observed in only 1 ROI, suggesting that the 5XFAD transgene does not strongly disrupt neural development or microstructure of mice in early adulthood. Strain also explained the most variance in mouse baseline motor activity and long-term fear memory. Additionally, significant effects of sex and strain*sex interaction were observed on baseline motor activity, and significant strain*sex and sex*5XFAD genotype interactions were observed on long-term memory. We are the first to study the genetic influences of brain microanatomy in genetically diverse AD mice. Thus, we demonstrated that strain is the primary factor influencing brain microstructure in young adult AD mice and that neural development and early adult microstructure are not strongly altered by the 5XFAD transgene. We also demonstrated that strain, sex, and 5XFAD genotype interact to influence memory in genetically diverse adult mice. Our results support the usefulness of the 5XFAD mouse model and convey strong relationships between natural genetic variation, brain microstructure, and memory.
RESUMO
The goal of this review article is to provide a resource for longitudinal studies, using animal models, directed at understanding and modifying the relationship between cognition and brain structure and function throughout life. We propose that forthcoming longitudinal studies will build upon a wealth of knowledge gleaned from prior cross-sectional designs to identify early predictors of variability in cognitive function during aging, and characterize fundamental neurobiological mechanisms that underlie the vulnerability to, and the trajectory of, cognitive decline. Finally, we present examples of biological measures that may differentiate mechanisms of the cognitive reserve at the molecular, cellular, and network level.
RESUMO
Developing strategies to maintain cognitive health is critical to quality of life during aging. The basis of healthy cognitive aging is poorly understood; thus, it is difficult to predict who will have normal cognition later in life. Individuals may have higher baseline functioning (cognitive reserve) and others may maintain or even improve with age (cognitive resilience). Understanding the mechanisms underlying cognitive reserve and resilience may hold the key to new therapeutic strategies for maintaining cognitive health. However, reserve and resilience have been inconsistently defined in human studies. Additionally, our understanding of the molecular and cellular bases of these phenomena is poor, compounded by a lack of longitudinal molecular and cognitive data that fully capture the dynamic trajectories of cognitive aging. Here, we used a genetically diverse mouse population (B6-BXDs) to characterize individual differences in cognitive abilities in adulthood and investigate evidence of cognitive reserve and/or resilience in middle-aged mice. We tested cognitive function at two ages (6 months and 14 months) using y-maze and contextual fear conditioning. We observed heritable variation in performance on these traits (h 2 RIxÌ = 0.51-0.74), suggesting moderate to strong genetic control depending on the cognitive domain. Due to the polygenetic nature of cognitive function, we did not find QTLs significantly associated with y-maze, contextual fear acquisition (CFA) or memory, or decline in cognitive function at the genome-wide level. To more precisely interrogate the molecular regulation of variation in these traits, we employed RNA-seq and identified gene networks related to transcription/translation, cellular metabolism, and neuronal function that were associated with working memory, contextual fear memory, and cognitive decline. Using this method, we nominate the Trio gene as a modulator of working memory ability. Finally, we propose a conceptual framework for identifying strains exhibiting cognitive reserve and/or resilience to assess whether these traits can be observed in middle-aged B6-BXDs. Though we found that earlier cognitive reserve evident early in life protects against cognitive impairment later in life, cognitive performance and age-related decline fell along a continuum, with no clear genotypes emerging as exemplars of exceptional reserve or resilience - leading to recommendations for future use of aging mouse populations to understand the nature of cognitive reserve and resilience.
RESUMO
Diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) arise from complex interactions of genetic and environmental factors, with genetic variants regulating individual responses to environmental exposures (i.e. gene-by-environment interactions). Identifying gene-by-environment interactions will be critical to fully understanding disease mechanisms and developing personalized therapeutics, though these interactions are still poorly understood and largely under-studied. Candidate gene approaches have shown that known disease risk variants often regulate response to environmental factors. However, recent improvements in exposome- and genome-wide association and interaction studies in humans and mice are enabling discovery of novel genetic variants and pathways that predict response to a variety of environmental factors. Here, we highlight recent approaches and ongoing developments in human and rodent studies to identify genetic modulators of environmental factors using AD and PD as exemplars. Identifying gene-by-environment interactions in disease will be critical to developing personalized intervention strategies and will pave the way for precision medicine.
Assuntos
Doença de Alzheimer , Expossoma , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Doença de Parkinson , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Animais , Humanos , Doença de Parkinson/etiologia , Doença de Parkinson/genéticaRESUMO
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Humanos , Doenças do Sistema Nervoso/patologia , Transporte Proteico/fisiologia , Vesículas Sinápticas/química , Vesículas Sinápticas/patologiaRESUMO
The synaptic vesicle glycoprotein 2C (SV2C) is an undercharacterized protein with enriched expression in phylogenetically old brain regions. Its precise role within the brain is unclear, though various lines of evidence suggest that SV2C is involved in the function of synaptic vesicles through the regulation of vesicular trafficking, calcium-induced exocytosis, or synaptotagmin function. SV2C has been linked to multiple neurological disorders, including Parkinson's disease and psychiatric conditions. SV2C is expressed in various cell types-primarily dopaminergic, GABAergic, and cholinergic cells. In mice, it is most highly expressed in nuclei within the basal ganglia, though it is unknown if this pattern of expression is consistent across species. Here, we use a custom SV2C-specific antiserum to describe localization within the brain of mouse, nonhuman primate, and human, including cell-type localization. We found that the immunoreactivity with this antiserum is consistent with previously-published antibodies, and confirmed localization of SV2C in the basal ganglia of rodent, rhesus macaque, and human. We observed strongest expression of SV2C in the substantia nigra, ventral tegmental area, dorsal striatum, pallidum, and nucleus accumbens of each species. Further, we demonstrate colocalization between SV2C and markers of dopaminergic, GABAergic, and cholinergic neurons within these brain regions. SV2C has been increasingly linked to dopamine and basal ganglia function. These antisera will be an important resource moving forward in our understanding of the role of SV2C in vesicle dynamics and neurological disease.
Assuntos
Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Gânglios da Base/metabolismo , Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Soros Imunes/imunologia , Imuno-Histoquímica/métodos , Macaca , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Transcriptoma/genéticaRESUMO
Many patients with Alzheimer's dementia (AD) also exhibit noncognitive symptoms such as sensorimotor deficits, which can precede the hallmark cognitive deficits and significantly impact daily activities and an individual's ability to live independently. However, the mechanisms underlying sensorimotor dysfunction in AD and their relationship with cognitive decline remains poorly understood, due in part to a lack of translationally relevant animal models. To address this, we recently developed a novel model of genetic diversity in Alzheimer's disease, the AD-BXD genetic reference panel. In this study, we investigated sensorimotor deficits in the AD-BXDs and the relationship to cognitive decline in these mice. We found that age- and AD-related declines in coordination, balance and vestibular function vary significantly across the panel, indicating genetic background strongly influences the expressivity of the familial AD mutations used in the AD-BXD panel and their impact on motor function. Although young males and females perform comparably regardless of genotype on narrow beam and inclined screen tasks, there were significant sex differences in aging- and AD-related decline, with females exhibiting worse decline than males of the same age and transgene status. Finally, we found that AD motor decline is not correlated with cognitive decline, suggesting that sensorimotor deficits in AD may occur through distinct mechanisms. Overall, our results suggest that AD-related sensorimotor decline is strongly dependent on background genetics and is independent of dementia and cognitive deficits, suggesting that effective therapeutics for the entire spectrum of AD symptoms will likely require interventions targeting each distinct domain involved in the disease.
Assuntos
Doença de Alzheimer/genética , Genótipo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Cognição , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Movimento , Fatores SexuaisRESUMO
The subiculum is the main target of the hippocampal region CA1 and is the principle output region of the hippocampus. The subiculum is critical to learning and memory, although it has been relatively understudied. There are two functional types of principle neurons within the subiculum: regular spiking (RS) and burst spiking (BS) neurons. To determine whether these cell types are differentially modified by learning-related experience, we performed whole-cell patch clamp recordings from male mouse brain slices following contextual fear conditioning (FC) and memory retrieval relative to a number of control behavioral paradigms. RS cells, but not BS cells, displayed a greater degree of experience-related plasticity in intrinsic excitability measures [afterhyperpolarization (AHP), input resistance (Rinput), current required to elicit a spike], with fear conditioned animals having generally more excitable RS cells compared to naïve controls. Furthermore, we found that the relative proportion of RS to BS neurons is modified by the type of exposure, with the lowest proportion of BS subicular cells occurring in animals that underwent contextual FC followed by a retrieval test. These studies indicate that pyramidal neurons in the subiculum undergo experience- and learning-related plasticity in intrinsic properties in a cell-type-specific manner. As BS and RS cells are thought to convey distinct types of information, this plasticity may be particularly important in encoding, consolidating, and recalling spatial information by modulating information flow from the hippocampus to cortical regions.
Assuntos
Condicionamento Clássico/fisiologia , Meio Ambiente , Medo/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Estimulação Elétrica , Eletrochoque , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Hipocampo/fisiologia , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/classificação , Neurônios/efeitos dos fármacos , Piridazinas/farmacologiaRESUMO
Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinson's disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.