Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geophys Res Lett ; 48(6): e2020GL091916, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33867597

RESUMO

Transient deformation associated with foreshocks activity has been observed before large earthquakes, suggesting the occurrence of a detectable preseismic slow slip during the initiation phase. A critical issue consists in discriminating the relative contributions from seismic and aseismic fault slip during the preparation phase of large earthquakes. We focus on the April-May 2017 Valparaíso earthquake sequence, which involved a M W  = 6.9 earthquake preceded by intense foreshock activity. To assess the relative contribution of seismic and aseismic slip, we compare surface displacement predicted from foreshocks source models with transient motion measured prior to the mainshock. The comparison between observed and predicted displacements shows that only half of the total displacement can be explained by the contribution of foreshocks. This result suggests the presence of aseismic pre-slip during an initiation phase preceding the mainshock.

2.
Sci Adv ; 2(6): e1600581, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386585

RESUMO

Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes.


Assuntos
Terremotos , Terremotos/história , Fenômenos Geológicos , História do Século XXI , Humanos , Modelos Teóricos , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA