Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Microb Ecol ; 66(3): 571-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23839799

RESUMO

Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ(13)C and δ(15)N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.


Assuntos
Amoeba/fisiologia , Bactérias/isolamento & purificação , Sphagnopsida/microbiologia , Sphagnopsida/parasitologia , Amoeba/classificação , Bactérias/classificação , Bactérias/genética , Biodiversidade , Cadeia Alimentar , Preferências Alimentares , Processos Heterotróficos , Dinâmica Populacional
2.
Isotopes Environ Health Stud ; 59(3): 217-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37307229

RESUMO

The Northern shoveler, Spatula clypeata, makes several migratory stopovers to reach its breeding site in the best conditions. These stopovers allow the species to replenish their reserves. Therefore, feeding efficiency at such sites is essential. Despite its importance, few studies have been conducted on the spring ecology of the shoveler, particularly on its diet at stopover sites. Therefore, this study focused on the Northern shoveler's feeding habit during its spring migratory stopover in the Marais breton (MB), a wetland situated in Vendée (France, Atlantic coast). The shoveler's plasma and potential food resources were studied using a stable carbon and nitrogen isotope analysis. The study showed that the shoveler feeds primarily on microcrustaceans, especially Cladocera and Copepoda; Chironomidae larvae, Corixidae, Hydrophilidae larvae, and particulate organic matter. This last food source, the POM, had never been highlighted before.


Assuntos
Migração Animal , Alimentos , Estações do Ano , França
3.
Mar Life Sci Technol ; 5(3): 415-430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37637251

RESUMO

Understanding consistencies and discrepancies in characterizing diversity and quantity of phytoplankton is essential for better modeling ecosystem change. In this study, eukaryotic phytoplankton in the Pearl River Estuary, South China Sea were investigated using nuclear 18S rRNA and plastid 16S or 23S rRNA genes and pigment analysis. It was found that 18S abundance poorly explained the variations in total chlorophyll a (Chl-a). However, the ratios of log-transformed 18S abundance to Chl-a in the major phytoplankton groups were generally environment dependent, suggesting that the ratio has potential as an indicator of the physiological state of phytoplankton. The richness of 18S-based operational taxonomic units was positively correlated with the richness of 16S-based amplicon sequence variants of the whole phytoplankton community, but insignificant or weak for individual phytoplankton groups. Overall, the 18S based, rather than the 16S based, community structure had a greater similarity to pigment-based estimations. Relative to the pigment data, the proportion of haptophytes in the 18S dataset, and diatoms and cryptophytes in the 16S dataset, were underestimated. This study highlights that 18S metabarcoding tends to reflect biomass-based community organization of eukaryotic phytoplankton. Because there were lower copy numbers of plastid 16S than 18S per genome, metabarcoding of 16S probably approximates cell abundance-based community organization. Changes in biomass organization of the pigment-based community were sensitive to environmental changes. Taken together, multiple methodologies are recommended to be applied to more accurately profile the diversity and community composition of phytoplankton in natural ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00186-x.

4.
Microb Ecol ; 63(1): 157-69, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22001998

RESUMO

The main goal of this work was to study the dynamics and biochemical composition of extracellular polysaccharides (ECPS), a fraction of the extracellular polymeric substances (EPS) produced during the development of a microphytobenthic biofilm in a European intertidal mudflat (Marennes-Oléron Bay, France) during winter. Microphytobenthic biomass was surveyed during four consecutive emersion periods to confirm the biofilm growth. Bacteria abundance was also checked considering the importance of heterotrophic bacteria observed by various authors in the dynamics of EPS. Various colorimetric assays, coupled to biochemical chromatographic analysis, were used to characterize the three main fractions of extracted EPS: colloidal, bound, and residual. The monosaccharide distribution of colloidal ECPS highlighted their role of carbon source for bacteria (>50% of glucose) even if no increase of colloidal carbohydrate amounts was observed during the tidal exposure. Bound ECPS were composed of deoxy or specific sugars (30% rhamnose) and uronic acids (18% galacturonic acid). Their levels and dynamics could be correlated to the development of the microphytobenthic biofilm, enhancing the stabilization of the sediment or increasing binding forces accordingly. Residual fractions, containing refractory bound ECPS and other internal polymeric substances, were composed of various carbohydrates. The high ratio of glucose in these fractions (18% to 43%) was interesting, as it was once attributed to colloidal sugars due to poor extraction procedures. Finally, the presence of inositol (15%) was significant since no author has highlighted it before, knowing that inositol is a major growth factor for heterotrophic bacteria.


Assuntos
Bactérias/crescimento & desenvolvimento , Baías/microbiologia , Biofilmes/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Polissacarídeos/química , Oceano Atlântico , Bactérias/metabolismo , Biomassa , França , Polissacarídeos/isolamento & purificação , Polissacarídeos Bacterianos/química
5.
Mar Pollut Bull ; 174: 113218, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952405

RESUMO

Ecological baselines for the structure and functioning of ecosystems in the absence of human activity can provide essential information on their health status. The Glorieuses islands are located in the Western Indian Ocean (WIO) and can be considered as "pristine" ecosystems that have not been subjected to anthropogenic pressure. Their nutrient context and the microbial assemblages were assessed by determining the abundance of heterotrophic prokaryotes (archaea and bacteria), picocyanobacteria, picoeukaryotes, microphytoplankton and protozooplankton communities in five stations, during two contrasted periods (November 2015 and May 2016). Chlorophyll-a concentrations were always under 1 µg/L and associated to very low levels in orthophosphates, nitrate and dissolved organic carbon, revealing an ultra-oligotrophic status for the Glorieuses waters. Picocyanobacteria confirmed the ultra-oligotrophic status with a predominance of Synechococcus. Zeaxanthin associated with the presence of picocyanobacteria represented the major pigment in both surveys. Three indices of diversity (species richness, Shannon and Pielou indexes) from microscopy observations highlighted the difference of diversity in microphytoplankton between the surveys. A focus on a 16S metabarcoding approach showed a high dominance of picocyanobacteria, Alpha- and Gammaproteobacteria, regardless of station or period. Multivariate analyses (co-inertia analyses) revealed a strong variability of ecological conditions between the two periods, with (i) high nutrient concentrations and heterotrophic nanoflagellate abundance in November 2015, and (ii) high heterotrophic prokaryote and picoeukaryote abundance in May 2016. The impact of a category 5 tropical cyclone (Fantala) on the regional zone in April 2016 is also advanced to explain these contrasted situations. Relative importance of top-down factors between bacterial and heterotrophic nanoflagellates was observed in November 2015 with an active microbial food web. All the results indicate that three microbial indexes potentially can be considered to assess the ecological change in Glorieuses marine waters.


Assuntos
Microbiota , Synechococcus , Efeitos Antropogênicos , Recifes de Corais , Matéria Orgânica Dissolvida , Humanos , Oceano Índico , Plâncton
6.
Water Res ; 221: 118718, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35749922

RESUMO

Wetlands, especially marshes, support many services such as carbon catchment control or water purification led by primary producers such as phytoplankton and microphytobenthos (PB). The impact of the sedimentary compartment, as source and sink of essential nutrients for the water column, is often neglected in the study of their dynamics and water purification capacity of the systems. This work compared monthly (between February 2020 and April 2021) the benthic and pelagic primary producers' dynamics in two anthropised freshwater marshes (Marans and Genouillé), with the simultaneous follow-up of physico-chemical parameters of the water column and nutrient fluxes at the sediment-water (SWI) interface. It was suggested a strong contribution of phytoplankton (pumping) and the benthic compartment (denitrification) to the water purification of these two nitrates (NO3-)-rich marshes. Total phytoplankton production fluctuated between ∼5 (winter) and 1500 mg C m-3 d-1 (fall) at Marans and between 40 (winter) and ∼750 mg C m-3 d-1 (spring) at Genouillé. At Marans, soluble reactive phosphorus (SRP) benthic effluxes (-2.101 to -6.102 µmol m-2 d-1 in fall and summer, respectively) coincided with phytoplankton bloom periods. These effluxes were inhibited by NO3- penetration in the sediment (0 to 5.104 µmol m-2 d-1), by inhibiting iron respiration. At Genouillé, inhibition of SRP effluxes depended on denitrification rate and on P stocks in the sediment, where slight SRP effluxes (-101 µmol m-2 d-1) could have co-occurred with slight NO3- influxes (5.102 µmol m-2 d-1) in spring. The presence of PB (between 10-60 and 40-120 mg gsed-1 at Marans and Genouillé, respectively), suggested a strong contribution of the benthic compartment to the total primary production (benthic and pelagic through resuspension processes) in these environments. This work encourages to consider the benthos and the pelagos as a unicum to provide better sustainable management of such systems and limit eutrophication risks in coastal areas.


Assuntos
Água Doce , Áreas Alagadas , Eutrofização , Sedimentos Geológicos , Fósforo , Fitoplâncton , Água
7.
Biodivers Data J ; 9: e70214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720636

RESUMO

BACKGROUND: The Freshwater Animal Diversity Assessment (FADA) project estimated that freshwater animal species represent 9.5% of the 1.2 million species described. Knowing that freshwater represents only 0.01% of the earth's surface, these wetlands are suitable habitats for a great part of the world's total biodiversity. However, it has been shown that there is a lack of knowledge on these species, including freshwater invertebrates. Nevertheless, they play a key role in the majority of freshwater ecosystems and in their foodweb networks. Freshwater invertebrates are the food resource of many species, such as fish and birds. The knowledge of their morphological, energetic and nutritive characteristics allows a better understanding of their selection by predators (size, energy intake etc.), but also leads to the improvement of wetland management. Although information about freshwater invertebrates exists in literature, they are generally heterogeneous, dispersed and difficult to collect. To facilitate the accessibility of these data and, thus, optimise and accelerate research projects including freshwater invertebrates, we propose a literature review describing 14 morphological and nutritive characteristics (size, dry weight, gross energy, crude protein etc.) for 656 taxa of freshwater invertebrates. NEW INFORMATION: This dataset is a review from 104 publications from 1935 to 2020, compiling 14 characteristics when available (size, dry weight, gross energy, crude protein etc.) for 656 taxa of freshwater invertebrates.

8.
Mar Pollut Bull ; 170: 112619, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153856

RESUMO

The effects of herbicide diuron on photosynthesis and vertical migration of intertidal microphytobenthos (MPB) assemblages were investigated using chlorophyll fluorometry. The results shown diuron ≤ 60 µg L-1 had no obvious effect on MPB vertical migration during 24 h indicated by consistent rhythm. Low concentration of 10 µg L-1 diuron had no significant influence on MPB photosynthesis throughout, however, high concentrations of 40, 50, and 60 µg L-1 had significant impacts exhibited by decreased parameters of maximum relative electron transport rate (rETRmax), maximal PS II quantum yield (Fv/Fm) and non-photochemical quenching (NPQ). For middle concentrations of 20 and 30 µg L-1, above decreased 3 parameters recovered sooner or later after 2 h or 16.5 h. Comparatively, rETRmax, Fv/Fm and NPQ are concentration dependent and more sensitive than other parameters in assessing diuron toxicity. This study revealed the potential of using MPB assemblages and chlorophyll fluorometry for rapid assessing diuron toxicity in coastal sediments.


Assuntos
Diurona , Herbicidas , Clorofila , Diurona/toxicidade , Fluorometria , Herbicidas/toxicidade , Fotossíntese
9.
Microbiol Res ; 252: 126854, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34454310

RESUMO

In order to understand the effect of human practices on microbial mats organisation, the study aimed to investigate the biodiversity within microbial mats from exploited and abandoned salterns. Despite several attempts, archaeal 16S rRNA gene fragment sequences were not obtained, indicating that microbial mats were probably dominated by Bacteria with very low abundance of Archaea (< 1%). Thus, the study compared the bacterial and meiofaunal diversity of microbial mats from abandoned and exploited salterns. The higher salinity (101 ± 3.7 psu vs. 51.1 ± 0.7 psu; Welch t-test p < 0.05) of the exploited site maintained lower bacterial diversity in comparison to the abandoned site where the salinity gradient was no longer maintained. However, the microbial mats exhibited similar bacterial class composition while the eukaryotic diversity was significantly higher in the exploited saltern. The abandoned saltern was dominated by sulfate-reducing bacteria and Nematoda, while the exploited saltern was characterized by the presence of halophilic bacteria belonging to Marinobacter, Salinivibrio and Rhodohalobacter genera, and the larger abundance of Hypotrichia (ciliates). Such bacterial and eukaryotic diversity difference might be explained by human actions for salt recovery in exploited salterns such as scraping the surface of microbial mat and increasing salinity renewing the microbial mat each year. Such action decreases the bacterial diversity changing the food web structure that favour the presence of a larger diversity of eukaryotic organisms. Our study provides new insights on microbial mat communities inhabiting salterns, especially the consequences of abandoning saltern exploitation.


Assuntos
Bactérias , Biodiversidade , Ecossistema , Microbiologia Ambiental , Eucariotos , Bactérias/classificação , Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , França , Ilhas , RNA Ribossômico 16S/genética
10.
Water Res ; 189: 116567, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161327

RESUMO

In freshwater systems, sediment can be an important source for the internal loading of PO4. The limiting character of this element in such system leads to consider this phenomenon in terms of eutrophication risks and water quality stakes. A four-months follow-up (January, March, April and May 2019) was carried out in a strong phosphate (PO4) limited secondary channel from an artificial irrigation system of Charente Maritime (France) to link the mobilization of remineralization products in the upper 6 cm layer of sediment (conventional core slicing/centrifugation and DET probes) and the phytoplankton biomass dynamics in the water column. Results showed congruent patterns between the temporal succession of the organic matter mineralization processes in the sediment and the primary biomass dynamics in the water column. In January and March (considered in winter), PO4 proved to be retained by adsorption onto iron oxides in anoxic sediment since pore water nitrate inhibited for about a month the respiration of metal oxides in the first cm of sediment, thus limiting PO4 availability and the phytoplankton growth. In April and May (early spring), after exhaustion of pore water nitrate, the dissolutive reduction of iron oxides released PO4 into pore water generated a significant diffusive outgoing flux from the sediment to the water column with a maximum in April (-1.10E-04±2.81E-05 nmol cm-2 s-1). This release coincided with the nanophytoplankton bloom (5.50 µg Chla L-1) and a potential increase of PO4 concentration in the water column. This work provides some insight on the importance of benthic-pelagic coupling in anthropogenic systems. This conceptual model has to be deployed on other sites of interest where internal loading of P takes precedence over external inputs and nitrate mitigation drives its benthic recycling and ultimately its bioavailability. This is to be essential to characterize the aquatic environment quality in order to limit eutrophication risks.


Assuntos
Fitoplâncton , Áreas Alagadas , Eutrofização , França , Água Doce , Sedimentos Geológicos , Nitrogênio/análise , Fósforo/análise
11.
Environ Microbiol ; 12(10): 2755-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20482742

RESUMO

As agents of mortality, viruses and nanoflagellates impact on picoplankton populations. We examined the differences in interactions between these compartments in two French Atlantic bays. Microbes, considered here as central actors of the planktonic food web, were first monitored seasonally in Arcachon (2005) and Marennes-Oléron (2006) bays. Their dynamics were evaluated to categorize trophic periods using the models of Legendre and Rassoulzadegan as a reference framework. Microbial interactions were then compared through 48 h batch culture experiments performed during the phytoplankton spring bloom, identified as herbivorous in Marennes and multivorous in Arcachon. Marennes was spatially homogeneous compared with Arcachon. The former was potentially more productive, featuring a large number of heterotrophic pathways, while autotrophic mechanisms dominated in Arcachon. A link was found between viruses and phytoplankton in Marennes, suggesting a role of virus in the regulation of autotroph biomass. Moreover, the virus-bacteria relation was weaker in Marennes, with a bacterial lysis potential of 2.6% compared with 39% in Arcachon. The batch experiments (based on size-fractionation and viral enrichment) revealed different microbial interactions that corresponded to the spring-bloom trophic interactions in each bay. In Arcachon, where there is a multivorous web, flagellate predation and viral lysis acted in an opposite way on picophytoplankton. When together they both reduced viral production. Conversely, in Marennes (herbivorous web), flagellates and viruses together increased viral production. Differences in the composition of the bacterial community composition explained the combined flagellate-virus effects on viral production in the two bays.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Cadeia Alimentar , Plâncton/crescimento & desenvolvimento , Organismos Aquáticos/virologia , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Biomassa , Dinoflagellida/crescimento & desenvolvimento , Ecossistema , Flagelos , Plâncton/virologia , Estações do Ano , Vírus/crescimento & desenvolvimento
12.
Environ Pollut ; 257: 113503, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761584

RESUMO

Diet is an important route of mercury (Hg) uptake in marine organisms. Trophic transfer of Hg throughout the food webs may be influenced by various factors, including diet and Hg speciation. Bivalves such as oysters are widely used as bioindicators of trace element pollution such as Hg. Nevertheless, our current knowledge regarding their ability to accumulate Hg from their diet is mainly based on experiments performed using phytoplankton. In their natural environment, oysters feed on a variety of food items including ciliates, detritus, in addition to phytoplankton. The present study aimed at examining the influence of diet composition on the trophic transfer of inorganic Hg (iHg) and methylmercury (MeHg) in the Pacific cupped oyster Crassostrea gigas. The pulse-chase feeding method was used with two radiolabeled food items: a heterotrophic protist (Uronema marinum) and a phytoplanktonic diatom (Thalassiosira pseudonana). Depuration of dietary Hg in the oysters was followed for 50 d. Kinetic parameters including assimilation efficiency (AE) and efflux rate constant (ke) were calculated. Our results showed that oysters fed on ciliates assimilated 96 ±â€¯1% and 31 ±â€¯2% of the ingested MeHg and iHg, respectively whereas these elements were similarly assimilated in the oysters fed on phytoplankton (78 ±â€¯3% and 86 ±â€¯4% for MeHg and iHg, respectively). Mercury assimilation in oyster is thus diet dependent (significant differences in AE, p < 0.05), metal species-dependent and likely resulting from variations in Hg bioavailability in the two food items tested and a gut passage time-dependent of the ingested matrix.


Assuntos
Crassostrea/metabolismo , Cadeia Alimentar , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Cilióforos , Diatomáceas , Dieta , Monitoramento Ambiental , Mercúrio/análise , Fitoplâncton , Alimentos Marinhos , Oligoelementos , Poluentes Químicos da Água/análise
13.
Mar Environ Res ; 161: 105124, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32891914

RESUMO

Although it has been shown that trophic transfer of trace elements in oysters can be influenced by the diet, most of the studies investigating the ability of oysters to bioaccumulate trace elements from their diet are based on experiments using phytoplankton alone. Wild oysters feed also on large bacteria, ciliates or detritic organic matter. The present study aimed at examining the influence of food quality on the assimilation efficiency (AE) of trace elements in the Pacific cupped oyster Crassostrea gigas. Oysters were exposed via their food to the radiotracers of essential (57Co, 54Mn and 65Zn) and non-essential (110mAg, 241Am and 109Cd) trace elements under different diets (protozoan ciliates Uronema marinum and diatoms Thalassiosira pseudonana). Significant differences were found only for Ag and 241Am, with lower AEs measured in oysters fed with ciliates than in individuals fed with diatoms (Ag: 54 ± 3% vs. 67 ± 4% and 241Am: 62 ± 4% vs. 76 ± 4%). Interestingly, no significant difference was found among estimated depuration rates (kel) for all trace elements ingested with the two diets tested. These findings indicate that the differences observed are driven by the digestion process, presumably due to difference of bioavailability of trace elements dependent on the quality of the food ingested.


Assuntos
Crassostrea , Oligoelementos , Animais , Dieta , Humanos , Estado Nutricional , Alimentos Marinhos
14.
Sci Total Environ ; 709: 135997, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887500

RESUMO

The increase in extreme events such as storms is one of the major threats that coastal ecosystems will have to face in the near future. In such a context, both maturation and ecological successions processes remain at the core of ecology to better anticipate the changes to ecosystem biodiversity and functions facing environmental stressors. However, these concepts are mainly approached through closed experimental studies that oversimplify the mechanisms. A survey was carried out on a 'natural' and open ecosystem subjected to an acute disturbance, i.e. a marine submersion of freshwater drained marshes, occurring after a storm. Plankton biomass, production and taxonomic/functional phytoplankton diversity were followed weekly at four stations over 2 months. Most of the stations were disrupted by this acute disturbance and displayed gradual growth and development, as described in the classical maturation process. The main differences between stations were attributed to the heterogeneity of the communities before the storm, the intensity of the disturbance and the different human actions performed to recover the freshwater environment. The concept of 'ecological resilience' was thus better suited than 'engineering resilience' for such open systems facing constant fluctuations in environmental drivers. With regard to ecological succession, the more impacted stations were marked by a significant change in taxonomic beta-diversity, with numerous stochastic processes, due to taxa dispersion. They first exhibited a convergence in functional traits due to the increase in nutrient availability drained from the catchment basin and then an increase in divergence when nutrients became limited.


Assuntos
Plâncton , Áreas Alagadas , Biodiversidade , Ecossistema , Água Doce
15.
Water Res ; 170: 115287, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812813

RESUMO

The functional diversity of two planktonic functional compartments, the nano-microphytoplankton and the mesozooplankton was used in order to better understand i) the drained marshes functioning and their related ecological functions, ii) the impacts of human control (replenishment) and human activities on the catchment basin (urbanization and catchment basin size). It was based on a monthly seasonal survey on 7 freshwater drained marshes. Both nano-microphyto- and mesozooplankton displayed high seasonal variations linked to the environmental fluctuations and human control on sea lock gates. Winter presented the lower biomasses of both compartments. Winter that is characterized by low water temperature, low light availability and high flood is actually related to the dominance of tychopelagic phytoplankton and K-strategists zooplankton. Spring and summer were characterized by i) the succession of pelagic large cells, small cells and then taxa with alternatives food strategies due to nitrogen limitation and phosphorous desorption from the sediment leading to eutrophication processes and ii) the dominance of r-strategists for mesozooplankton. The artificial summer replenishment acts positively on water quality by decreasing the eutrophication processes since the nitrogen inputs limit the proliferation of phytoplankton mixotrophs and diazotrophs and increase the ecological efficiency during the warm period. Both small and large catchment basins may lead to summer eutrophication processes in drained marshes since the largest ones imply higher hydrodynamic features at the root of large inputs of nitrogen nutrient favoring the phytoplankton development while the smallest ones exhibit hypoxia problems due to high proliferation of macrophytes. Urbanized marshes are less subjected to eutrophication during summer than non urbanized marshes due to more recurrent nutrient inputs from urban waste. However they exhibited a lower ecological efficiency. The results suggest that a better management of the hydrodynamics of such anthropogenic systems can avoid eutrophication risks on coastal areas.


Assuntos
Plâncton , Áreas Alagadas , Animais , Eutrofização , Atividades Humanas , Humanos , Fitoplâncton , Estações do Ano
16.
Mar Environ Res ; 160: 104985, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907723

RESUMO

This study aims at (1) experimentally estimating first sexual maturation of the European sardine S. pilchardus, (2) using the results to calibrate existing bioenergetic models. During the 183 days-experiment, fish growth and body condition were assessed by biometry, and gonads were weighed when present. Age, wet weight and total length at first maturity were estimated at 262 days, 10.79 ± 0.75 g, and 11.26 ± 0.21 cm, respectively. Including these traits in biphasic Von Bertalanffy models did not significantly improve simulations for either length or weight data, meaning that energy allocation was not impacted by these traits. The implementation of the results in the Dynamic Energy Budget (DEB) calibration procedure strengthened the parameter set of the existing model, but resulted in significant changes in the energy allocation. Our results are a first step that will allow the design of new experiments to further quantify maturation and reproduction rates in diverse environmental conditions, consolidating DEB model calibration.


Assuntos
Peixes , Alimentos Marinhos , Animais , Metabolismo Energético , Peixes/crescimento & desenvolvimento , Gônadas
17.
Sci Rep ; 8(1): 11790, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087413

RESUMO

The phylogenetic assignment of archaeal communities is constantly evolving, and the recent discovery of new phyla that grouped into superphyla has provided novel insights into archaeal ecology and evolution in ecosystems. In intertidal sediments, archaea are known to be involved in key functional processes such as organic matter turnover, but the ecological relevance of the rarest archaeal groups is poorly investigated, due partly to the lack of cultivated members. The high resolution of microbial diversity provided by high-throughput sequencing technologies now allows the rare biosphere to be described. In this work, we focused on the archaeal C3 group, showing that this phylum is not only present (at the DNA level) independently of sediment depth but also active (at the RNA level) in specific sediment niches depending on vertical physicochemical gradients. Moreover, we highlight the ambiguous phylogenetic affiliation of this group, indicating the need of further research to get new insights into the role of the C3 group.


Assuntos
Archaea , Biodiversidade , Sedimentos Geológicos/microbiologia , Archaea/citologia , Archaea/genética , Oceano Atlântico
18.
Mar Environ Res ; 116: 18-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970685

RESUMO

Coral reef and atoll lagoons are among the most diversified marine ecosystems but also the most affected by the combined effects of climate change and human activities. The Iles Eparses (Scattered Islands) in the Western Indian Ocean have been little affected by human pressure and can be considered to be "pristine" ecosystems. Metazooplankton plays a major role in the functioning and productivity of aquatic ecosystems, and this study was undertaken: (i) to determine the spatial abundance, distribution and species composition of metazooplankton, (ii) to assess the effect of metazooplankton grazing on pico- and nanophytoplankton and (iii) to analyze the trophic positions of metazooplankton by using the stable isotope signatures of a wide variety of taxa and particulate organic matter from the Iles Eparses and Mayotte. Tromelin Island (which is not located in the Mozambique Channel) had the lowest metazooplankton abundance with no cyanobacteria Trichodesmium spp. or mollusks (pteropods) presence, and with δ(15)N signatures of organisms that were higher than for the islands in the Mozambique Channel. Trichodesmium spp. was found in the Mozambique Channel and the plankton food web was probably based preferentially on these cyanobacteria with lower δ(15)N signatures indicating direct or indirect trophic transfer of diazotrophic nitrogen to metazooplankton. Three of the islands were distinct: Europa had the highest proportion of copepods, with oithonids being dominant, which is typical of rich mangrove systems, while Juan de Nova and Mayotte seemed to be the sites most affected by human activity with a high abundance of appendicularians and distinct particulate organic matter ∂(13)C signatures. Grazing experiments showed that food could be a limiting factor for metazooplankton in the Iles Eparses. However, the effect of metazooplankton grazing on phytoplankton appeared to be very low (0.01-2.32% of the total phytoplankton per day).


Assuntos
Cadeia Alimentar , Plâncton/fisiologia , Zooplâncton/fisiologia , Animais , Oceano Índico , Ilhas
19.
Front Microbiol ; 7: 1950, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994581

RESUMO

Disturbance strongly impacts patterns of community diversity, yet the shape of the diversity-disturbance relationship remains a matter of debate. The topic has been of interest in theoretical ecology for decades as it has practical implications for the understanding of ecosystem services in nature. One of these processes is the remineralization of organic matter by microorganisms in coastal marine sediments, which are periodically impacted by disturbances across the sediment-water interface. Here we set up an experiment to test the hypothesis that disturbance impacts microbial diversity and function during the anaerobic degradation of organic matter in coastal sediments. We show that during the first 3 weeks of the experiment, disturbance increased both microbial production, derived from the increase in microbial abundance, and diversity of the active fraction of the community. Both community diversity and phylogenetic diversity increased, which suggests that disturbance promoted the cohabitation of ecologically different microorganisms. Metagenome analysis also showed that disturbance increased the relative abundance of genes diagnostic of metabolism associated with the sequential anaerobic degradation of organic matter. However, community composition was not impacted in a systematic way and changed over time. In nature, we can hypothesize that moderate storm disturbances, which impact coastal sediments, promote diverse, and productive communities. These events, rather than altering the decomposition of organic matter, may increase the substrate turnover and, ultimately, remineralization rates.

20.
ISME J ; 9(1): 32-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25003964

RESUMO

In intertidal marine sediments, characterized by rapidly fluctuating and often extreme light conditions, primary production is frequently dominated by diatoms. We performed a comparative analysis of photophysiological traits in 15 marine benthic diatom species belonging to the four major morphological growth forms (epipelon (EPL), motile epipsammon (EPM-M) and non-motile epipsammon (EPM-NM) and tychoplankton (TYCHO)) found in these sediments. Our analyses revealed a clear relationship between growth form and photoprotective capacity, and identified fast regulatory physiological photoprotective traits (that is, non-photochemical quenching (NPQ) and the xanthophyll cycle (XC)) as key traits defining the functional light response of these diatoms. EPM-NM and motile EPL showed the highest and lowest NPQ, respectively, with EPM-M showing intermediate values. Like EPL, TYCHO had low NPQ, irrespective of whether they were grown in benthic or planktonic conditions, reflecting an adaptation to a low light environment. Our results thus provide the first experimental evidence for the existence of a trade-off between behavioural (motility) and physiological photoprotective mechanisms (NPQ and the XC) in the four major intertidal benthic diatoms growth forms using unialgal cultures. Remarkably, although motility is restricted to the raphid pennate diatom clade, raphid pennate species, which have adopted a non-motile epipsammic or a tychoplanktonic life style, display the physiological photoprotective response typical of these growth forms. This observation underscores the importance of growth form and not phylogenetic relatedness as the prime determinant shaping the physiological photoprotective capacity of benthic diatoms.


Assuntos
Diatomáceas/metabolismo , Aclimatação , Diatomáceas/crescimento & desenvolvimento , Luz , Fotossíntese/fisiologia , Filogenia , Fitoplâncton/crescimento & desenvolvimento , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA