Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671822

RESUMO

Climbing performance is greatly dependent on the endurance of the finger flexors which, in turn, depends on the ability to deliver and use oxygen within the muscle. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) have provided new possibilities to explore these phenomena in the microvascular environment. The aim of the present study was to explore climbing-related microvascular adaptations through the comparison of the oxygen concentration and hemodynamics of the forearm between climbers and non-climber active individuals during a vascular occlusion test (VOT). Seventeen climbers and fifteen non-climbers joined the study. Through NIRS and DCS, the oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) concentrations, tissue saturation index (TSI), and blood flow index (BFI) were obtained from the flexor digitorum profundus during the VOT. During the reactive hyperemia, climbers presented greater blood flow slopes (p = 0.043, d = 0.573), as well as greater O2Hb maximum values (p = 0.001, d = 1.263) and HHb minimum values (p = 0.009, d = 0.998), than non-climbers. The superior hemodynamics presented by climbers could indicate potential training-induced structural and functional adaptations that could enhance oxygen transportation to the muscle, and thus enhance muscle endurance and climbing performance.

2.
Biomed Opt Express ; 15(5): 2890-2897, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855661

RESUMO

The feature Issue on "Dynamic Light Scattering in Biomedical Applications" presents a compilation of research breakthroughs and technological advancements that have shaped the field of biophotonics, particularly in the non-invasive exploration of biological tissues. Highlighting the significance of dynamic light scattering (DLS) alongside techniques like laser Doppler flowmetry (LDF), diffusing wave spectroscopy (DWS), and laser speckle contrast imaging (LSCI), this issue underscores the versatile applications of these methods in capturing the intricate dynamics of microcirculatory blood flow across various tissues. Contributions explore developments in fluorescence tomography, the integration of machine learning for data processing, enhancements in microscopy for cancer detection, and novel approaches in optical biophysics, among others. Innovations featured include a high-resolution speckle contrast tomography system for deep blood flow imaging, a rapid estimation technique for real-time tissue perfusion imaging, and the use of convolutional neural networks for efficient blood flow mapping. Additionally, studies delve into the impact of skin strain on spectral reflectance, the sensitivity of cerebral blood flow measurement techniques, and the potential of photobiomodulation for enhancing brain function. This issue not only showcases the latest theoretical and experimental strides in DLS-based imaging but also anticipates the continued evolution of these modalities for groundbreaking applications in disease detection, diagnosis, and monitoring, marking a pivotal contribution to the field of biomedical optics.

3.
PLoS One ; 19(5): e0302242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722962

RESUMO

INTRODUCTION: Developmental coordination disorder (DCD) is one of the most prevalent pediatric chronic conditions. Without proper intervention, significant delays in motor skill performance and learning may persist until adulthood. Moderate-to-vigorous physical exercise has been proven to improve motor learning (adaptation and consolidation) in children with or without disorders. However, the effect of a short bout of physical exercise on motor adaptation and consolidation in children with DCD has not been examined. Furthermore, the role of perceptual-motor integration and attention as mediators of learning has not been examined via neuroimaging in this population. OBJECTIVES: Therefore, the primary aims of this project will be to compare children with and without DCD to (a) examine the effect of acute exercise on motor learning (adaptation and consolidation) while performing a rotational visuo-motor adaptation task (rVMA), and (b) explore cortical activation in the dorsolateral- and ventrolateral-prefrontal cortex areas while learning the rVMA task under rest or post-exercise conditions. METHODS: One hundred twenty children will be recruited (60 DCD, 60 controls) and within-cohort randomly assigned to either exercise (13-minute shuttle run task) or rest prior to performing the rVMA task. Adaptation and consolidation will be evaluated via two error variables and three retention tests (1h, 24h and 7 days post adaptation). Cortical activation will be registered via functional near-infrared spectroscopy (fNIRS) during the baseline, adaptation, and consolidation. DISCUSSION: We expect to find exercise benefits on motor learning and attention so that children with DCD profiles will be closer to those of children with typical development. The results of this project will provide further evidence to: (a) better characterize children with DCD for the design of educational materials, and (b) establish acute exercise as a potential intervention to improve motor learning and attention.


Assuntos
Exercício Físico , Aprendizagem , Transtornos das Habilidades Motoras , Destreza Motora , Humanos , Transtornos das Habilidades Motoras/fisiopatologia , Criança , Aprendizagem/fisiologia , Exercício Físico/fisiologia , Feminino , Masculino , Destreza Motora/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adaptação Fisiológica , Adolescente , Terapia por Exercício/métodos
4.
Biomed Opt Express ; 15(2): 875-899, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404339

RESUMO

Diffuse optical methods including speckle contrast optical spectroscopy and tomography (SCOS and SCOT), use speckle contrast (κ) to measure deep blood flow. In order to design practical systems, parameters such as signal-to-noise ratio (SNR) and the effects of limited sampling of statistical quantities, should be considered. To that end, we have developed a method for simulating speckle contrast signals including effects of detector noise. The method was validated experimentally, and the simulations were used to study the effects of physical and experimental parameters on the accuracy and precision of κ. These results revealed that systematic detector effects resulted in decreased accuracy and precision of κ in the regime of low detected signals. The method can provide guidelines for the design and usage of SCOS and/or SCOT instruments.

6.
J Vis Exp ; (207)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801263

RESUMO

The detection of levels of impairment in microvascular oxygen consumption and reactive hyperemia is vital in critical care. However, there are no practical means for a robust and quantitative evaluation. This paper describes a protocol to evaluate these impairments using a hybrid near-infrared diffuse optical device. The device contains modules for near-infrared time-resolved and diffuse correlation spectroscopies and pulse-oximetry. These modules allow the non-invasive, continuous, and real-time measurement of the absolute, microvascular blood/tissue oxygen saturation (StO2) and the blood flow index (BFI) along with the peripheral arterial oxygen saturation (SpO2). This device uses an integrated, computer-controlled tourniquet system to execute a standardized protocol with optical data acquisition from the brachioradialis muscle. The standardized vascular occlusion test (VOT) takes care of the variations in the occlusion duration and pressure reported in the literature, while the automation minimizes inter-operator differences. The protocol we describe focuses on a 3-min occlusion period but the details described in this paper can readily be adapted to other durations and cuff pressures, as well as other muscles. The inclusion of an extended baseline and post-occlusion recovery period measurement allows the quantification of the baseline values for all the parameters and the blood/tissue deoxygenation rate that corresponds to the metabolic rate of oxygen consumption. Once the cuff is released, we characterize the tissue reoxygenation rate, magnitude, and duration of the hyperemic response in BFI and StO2. These latter parameters correspond to the quantification of the reactive hyperemia, which provides information about the endothelial function. Furthermore, the above-mentioned measurements of the absolute concentration of oxygenated and deoxygenated hemoglobin, BFI, the derived metabolic rate of oxygen consumption, StO2, and SpO2 provide a yet-to-be-explored rich data set that can exhibit disease severity, personalized therapeutics, and management interventions.


Assuntos
Cuidados Críticos , Hiperemia , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Hiperemia/metabolismo , Humanos , Cuidados Críticos/métodos , Oxigênio/metabolismo , Oxigênio/sangue , Consumo de Oxigênio/fisiologia , Oximetria/métodos , Oximetria/instrumentação , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Microcirculação/fisiologia , Microvasos/metabolismo , Saturação de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA