Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 51(3): 535-547.e9, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31519498

RESUMO

Inactivating mutations of the CREBBP and EP300 acetyltransferases are among the most common genetic alterations in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). Here, we examined the relationship between these two enzymes in germinal center (GC) B cells, the normal counterpart of FL and DLBCL, and in lymphomagenesis by using conditional GC-directed deletion mouse models targeting Crebbp or Ep300. We found that CREBBP and EP300 modulate common as well as distinct transcriptional programs implicated in separate anatomic and functional GC compartments. Consistently, deletion of Ep300 but not Crebbp impaired the fitness of GC B cells in vivo. Combined loss of Crebbp and Ep300 completely abrogated GC formation, suggesting that these proteins partially compensate for each other through common transcriptional targets. This synthetic lethal interaction was retained in CREBBP-mutant DLBCL cells and could be pharmacologically targeted with selective small molecule inhibitors of CREBBP and EP300 function. These data provide proof-of-principle for the clinical development of EP300-specific inhibitors in FL and DLBCL.


Assuntos
Linfócitos B/fisiologia , Proteína de Ligação a CREB/genética , Proteína p300 Associada a E1A/genética , Epigênese Genética/genética , Centro Germinativo/fisiologia , Linfoma Folicular/etiologia , Linfoma Difuso de Grandes Células B/genética , Acetiltransferases/genética , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Deleção de Sequência/genética , Transcrição Gênica/genética
2.
Proc Natl Acad Sci U S A ; 120(11): e2218330120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893259

RESUMO

Heterozygous inactivating mutations of the KMT2D methyltransferase and the CREBBP acetyltransferase are among the most common genetic alterations in B cell lymphoma and co-occur in 40 to 60% of follicular lymphoma (FL) and 30% of EZB/C3 diffuse large B cell lymphoma (DLBCL) cases, suggesting they may be coselected. Here, we show that combined germinal center (GC)-specific haploinsufficiency of Crebbp and Kmt2d synergizes in vivo to promote the expansion of abnormally polarized GCs, a common preneoplastic event. These enzymes form a biochemical complex on select enhancers/superenhancers that are critical for the delivery of immune signals in the GC light zone and are only corrupted upon dual Crebbp/Kmt2d loss, both in mouse GC B cells and in human DLBCL. Moreover, CREBBP directly acetylates KMT2D in GC-derived B cells, and, consistently, its inactivation by FL/DLBCL-associated mutations abrogates its ability to catalyze KMT2D acetylation. Genetic and pharmacologic loss of CREBBP and the consequent decrease in KMT2D acetylation lead to reduced levels of H3K4me1, supporting a role for this posttranslational modification in modulating KMT2D activity. Our data identify a direct biochemical and functional interaction between CREBBP and KMT2D in the GC, with implications for their role as tumor suppressors in FL/DLBCL and for the development of precision medicine approaches targeting enhancer defects induced by their combined loss.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Animais , Humanos , Camundongos , Acetilação , Linfócitos B/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Centro Germinativo , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/patologia , Mutação , Processamento de Proteína Pós-Traducional
3.
Nat Prod Rep ; 41(3): 512, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230759

RESUMO

Correction for 'Future antimalarials from Artemisia? A rationale for natural product mining against drug-refractory Plasmodium stages' by Alexandre Maciuk et al., Nat. Prod. Rep., 2023, 40, 1130-1144, https://doi.org/10.1039/D3NP00001J.

4.
Haematologica ; 109(1): 175-185, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199120

RESUMO

Intracellular uptake of adenosine is essential for optimal erythroid commitment and differentiation of hematopoietic progenitor cells. The role of adenosine signaling is well documented in the regulation of blood flow, cell proliferation, apoptosis, and stem cell regeneration. However, the role of adenosine signaling in hematopoiesis remains unclear. In this study, we show that adenosine signaling inhibits the proliferation of erythroid precursors by activating the p53 pathway and hampers the terminal erythroid maturation. Furthermore, we demonstrate that the activation of specific adenosine receptors promotes myelopoiesis. Overall, our findings indicate that extracellular adenosine could be a new player in the regulation of hematopoiesis.


Assuntos
Adenosina , Eritropoese , Humanos , Adenosina/metabolismo , Hematopoese , Mielopoese , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular
5.
Nat Prod Rep ; 40(6): 1130-1144, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37021639

RESUMO

Covering: up to 2023Infusions of the plants Artemisia annua and A. afra are gaining broad popularity to prevent or treat malaria. There is an urgent need to address this controversial public health question by providing solid scientific evidence in relation to these uses. Infusions of either species were shown to inhibit the asexual blood stages, the liver stages including the hypnozoites, but also the sexual stages, the gametocytes, of Plasmodium parasites. Elimination of hypnozoites and sterilization of mature gametocytes remain pivotal elements of the radical cure of P. vivax, and the blockage of P. vivax and P. falciparum transmission, respectively. Drugs active against these stages are restricted to the 8-aminoquinolines primaquine and tafenoquine, a paucity worsened by their double dependence on the host genetic to elicit clinical activity without severe toxicity. Besides artemisinin, these Artemisia spp. contain many natural products effective against Plasmodium asexual blood stages, but their activity against hypnozoites and gametocytes was never investigated. In the context of important therapeutic issues, we provide a review addressing (i) the role of artemisinin in the bioactivity of these Artemisia infusions against specific parasite stages, i.e., alone or in association with other phytochemicals; (ii) the mechanisms of action and biological targets in Plasmodium of ca. 60 infusion-specific Artemisia phytochemicals, with an emphasis on drug-refractory parasite stages (i.e., hypnozoites and gametocytes). Our objective is to guide the strategic prospecting of antiplasmodial natural products from these Artemisia spp., paving the way toward novel antimalarial "hit" compounds either naturally occurring or Artemisia-inspired.


Assuntos
Antimaláricos , Artemisia , Artemisininas , Produtos Biológicos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Produtos Biológicos/farmacologia , Compostos Fitoquímicos/farmacologia , Plasmodium falciparum
6.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36942862

RESUMO

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Assuntos
Biologia , Humanos , Paris
7.
Blood ; 137(26): 3660-3669, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33763700

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.


Assuntos
Antígenos de Grupos Sanguíneos , Deficiências do Desenvolvimento , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Convulsões , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Glicosilfosfatidilinositóis/genética , Humanos , Células K562 , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Convulsões/enzimologia , Convulsões/genética
8.
Transfusion ; 63(3): 610-618, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36744388

RESUMO

BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).


Assuntos
Antígenos de Grupos Sanguíneos , Gravidez , Feminino , Humanos , Células HEK293 , Prevalência , Antígenos de Grupos Sanguíneos/genética , Isoanticorpos , Estrutura Molecular
9.
Econ Lett ; 219: 110717, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35909983

RESUMO

We analyze the potential role of equity injections in addressing solvency risks among small and medium-sized enterprises (SMEs) after the COVID-19 crisis. Building on firm-level balance sheet projections for a sample of European economies, we simulate selected policy interventions and find that equity injections are quite effective at dampening the rise in insolvencies. Cost effectiveness requires careful targeting, however; under an illustrative scenario, leaving aside any costs arising from imperfect information and implementation, the cost of a program targeting only those SMEs worth saving is just a tenth of the cost of an untargeted approach directed to all insolvent firms. Overall, our paper provides a case for governments to rely more on targeted equity injections in responding to major shocks that trigger mass solvency risks.

10.
J Biol Chem ; 294(33): 12483-12494, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248982

RESUMO

Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.


Assuntos
Benzeno , Benzoquinonas/metabolismo , Leucemia , Proteínas de Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Fator de Transcrição STAT1 , Transdução de Sinais/efeitos dos fármacos , Benzeno/farmacocinética , Benzeno/farmacologia , Células HEK293 , Humanos , Células Jurkat , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética
11.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158263

RESUMO

Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed and evaluated a natural product-derived photoactivatable probe AZC-GA 5, embedding a photoalkylative fluorogenic motif of the 7-azidocoumarin (AZC) type, devoted to studying the affinity proteins interacting with GA in Plasmodium falciparum. Probe 5 manifested a number of positive functional and biological features, such as (i) inhibitory activity in vitro against P. falciparum blood-stages that was superimposable to that of GA 1, dose-response photoalkylative fluorogenic properties (ii) in model conditions using bovine serum albumin (BSA) as an affinity protein surrogate, (iii) in live P. falciparum-infected erythrocytes, and (iv) in fresh P. falciparum cell lysate. Fluorogenic signals by photoactivated AZC-GA 5 in biological settings were markedly abolished in the presence of excess GA 1 as a competitor, indicating significant pharmacological specificity of the designed molecular probe relative to the native PPAP. These results open the way to identify the detected plasmodial proteins as putative drug targets for the natural product 1 by means of proteomic analysis.


Assuntos
Benzofenonas , Corantes Fluorescentes , Imagem Óptica , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Benzofenonas/química , Benzofenonas/farmacologia , Eritrócitos/parasitologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Plasmodium falciparum/citologia
12.
Mol Pharmacol ; 96(2): 297-306, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221825

RESUMO

Etoposide is a widely prescribed anticancer drug that is, however, associated with an increased risk of secondary leukemia. Although the molecular basis underlying the development of these leukemias remains poorly understood, increasing evidence implicates the interaction of etoposide metabolites [i.e., etoposide quinone (EQ)] with topoisomerase II enzymes. However, effects of etoposide quinone on other cellular targets could also be at play. We investigated whether T-cell protein tyrosine phosphatase (TCPTP), a protein tyrosine phosphatase that plays a key role in normal and malignant hematopoiesis through regulation of Janus kinase/signal transducer and activator of transcription signaling, could be a target of EQ. We report here that EQ is an irreversible inhibitor of TCPTP phosphatase (IC50 = ∼7 µM, second-order rate inhibition constant of ∼810 M-1⋅min-1). No inhibition was observed with the parent drug. The inhibition by EQ was found to be due to the formation of a covalent adduct at the catalytic cysteine residue in the active site of TCPTP. Exposure of human hematopoietic cells (HL60 and Jurkat) to EQ led to inhibition of endogenous TCPTP and concomitant increase in STAT1 tyrosine phosphorylation. Our results suggest that in addition to alteration of topoisomerase II functions, EQ could also contribute to etoposide-dependent leukemogenesis through impairment of key hematopoietic signaling enzymes, such as TCPTP.


Assuntos
Etoposídeo/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Quinonas/farmacologia , Sítios de Ligação , Domínio Catalítico , Cisteína/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Células Jurkat , Fosforilação/efeitos dos fármacos , Quinonas/química , Fator de Transcrição STAT1/metabolismo
13.
Blood ; 129(19): 2645-2656, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28288979

RESUMO

CREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits in B-cell development and can cooperate with Bcl2 overexpression to promote B-cell lymphoma. Through transcriptional and epigenetic profiling of these B cells, we found that Crebbp inactivation was associated with broad transcriptional alterations, but no changes in the patterns of histone acetylation at the proximal regulatory regions of these genes. However, B cells with Crebbp inactivation showed high expression of Myc and patterns of altered histone acetylation that were localized to intragenic regions, enriched for Myc DNA binding motifs, and showed Myc binding. Through the analysis of CREBBP mutations from a large cohort of primary human FL and DLBCL, we show a significant difference in the spectrum of CREBBP mutations in these 2 diseases, with higher frequencies of nonsense/frameshift mutations in DLBCL compared with FL. Together, our data therefore provide important links between Crebbp inactivation and Bcl2 dependence and show a role for Crebbp inactivation in the induction of Myc expression. We suggest this may parallel the role of CREBBP frameshift/nonsense mutations in DLBCL that result in loss of the protein, but may contrast the role of missense mutations in the lysine acetyltransferase domain that are more frequently observed in FL and yield an inactive protein.


Assuntos
Linfócitos B/patologia , Proteína de Ligação a CREB/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Epigênese Genética , Deleção de Genes , Humanos , Linfoma Folicular/genética , Camundongos , Camundongos Transgênicos , Mutação
14.
Mol Pharmacol ; 92(3): 358-365, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674152

RESUMO

Thiram (tetramethylthiuram disulfide) is a representative dithiocarbamate (DTC) pesticide used in both the field and as a seed protectant. The widespread use of Thiram and other DTC pesticides has raised concerns for health, because these compounds can exert neuropathic, endocrine disruptive, and carcinogenic effects. These toxic effects are thought to rely, at least in part, on the reaction of Thiram (and certain of its metabolites) with cellular protein thiols with subsequent loss of protein function. So far, a limited number of molecular targets of Thiram have been reported, including few enzymes such as dopamine ß-hydroxylase, 11ß-hydroxysteroid dehydrogenase, and brain glycogen phosphorylase. We provide evidence that Thiram is an inhibitor (KI = 23 µM; kinact = 0.085 second-1; kinact/KI = 3691 M-1⋅s-1) of human arylamine N-acetyltransferase 1 (NAT1), a phase II xenobiotic-metabolizing enzyme that plays a key role in the biotransformation of aromatic amine xenobiotics. Thiram was found to act as an irreversible inhibitor through the modification of NAT1 catalytic cysteine residue as also reported for other enzymes targeted by this pesticide. We also showed using purified NAT1 and human keratinocytes that Thiram impaired the N-acetylation of 3,4-dichloroaniline (3,4-DCA), a major toxic metabolite of aromatic amine pesticides (such as Diuron or Propanil). As coexposure to different classes of pesticides is common, our data suggest that pharmacokinetic drug-drug interactions between DTC pesticides such as Thiram and aromatic amine pesticides may occur through alteration of NAT1 enzymes functions.


Assuntos
Arilamina N-Acetiltransferase/antagonistas & inibidores , Fungicidas Industriais/farmacologia , Isoenzimas/antagonistas & inibidores , Tiram/farmacologia , Acetilação , Compostos de Anilina/metabolismo , Células Cultivadas , Ditiotreitol/farmacologia , Humanos
15.
J Biol Chem ; 291(46): 23842-23853, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27660393

RESUMO

Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.


Assuntos
Dissulfetos/química , Glicogênio Fosforilase Encefálica/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Glicogênio/química , Glicogênio/metabolismo , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Fosforilação/fisiologia , Coelhos , Ratos
16.
J Biol Chem ; 291(35): 18072-83, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402852

RESUMO

Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen.


Assuntos
Monofosfato de Adenosina/química , Glicogênio Fosforilase Encefálica/química , Proteínas do Tecido Nervoso/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos
17.
Nat Prod Rep ; 34(3): 329, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304046

RESUMO

Correction for 'Fluorescent natural products as probes and tracers in biology' by Romain Duval et al., Nat. Prod. Rep., 2017, DOI: 10.1039/c6np00111d.

18.
Nat Prod Rep ; 34(2): 161-193, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28125109

RESUMO

Covering: 1985 up to the end of 2016Fluorescence is a remarkable property of many natural products in addition to their medicinal and biological values. Herein, we provide a review on these peculiar secondary metabolites to stimulate prospecting of them as original fluorescent tracers, endowed with unique photophysical properties and with applications in most fields of biology. The compounds are spectrally categorized (i.e. fluorescing from violet to the near infra-red) and further structurally classified within each category. Natural products selected for their high impact in modern fluorescence-based biological studies are highlighted throughout the article. Finally, we discuss aspects of chemical ecology where fluorescent natural products might have key evolutionary roles and thus open new research directions in the field.


Assuntos
Produtos Biológicos/química , Fluorescência , Ecologia , Estrutura Molecular
19.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 266-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664736

RESUMO

Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. To better understand the mode of binding of the cofactor by this family of enzymes, the structure of Mesorhizobium loti NAT1 [(RHILO)NAT1] was determined in complex with CoA. The F42W mutant of (RHILO)NAT1 was used as it is well expressed in Escherichia coli and displays enzymatic properties similar to those of the wild type. The apo and holo structures of (RHILO)NAT1 F42W were solved at 1.8 and 2 Šresolution, respectively. As observed in the Mycobacterium marinum NAT1-CoA complex, in (RHILO)NAT1 CoA binding induces slight structural rearrangements that are mostly confined to certain residues of its `P-loop'. Importantly, it was found that the mode of binding of CoA is highly similar to that of M. marinum NAT1 but different from the modes reported for Bacillus anthracis NAT1 and Homo sapiens NAT2. Therefore, in contrast to previous data, this study shows that different orthologous NATs can bind their cofactors in a similar way, suggesting that the mode of binding CoA in this family of enzymes is less diverse than previously thought. Moreover, it supports the notion that the presence of the `mammalian/eukaryotic insertion loop' in certain NAT enzymes impacts the mode of binding CoA by imposing structural constraints.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Coenzima A/metabolismo , Mesorhizobium/enzimologia , Sequência de Aminoácidos , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/genética , Sítios de Ligação , Coenzima A/química , Cristalografia por Raios X , Mesorhizobium/química , Mesorhizobium/genética , Mesorhizobium/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Conformação Proteica , Alinhamento de Sequência
20.
Anal Biochem ; 486: 35-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26099937

RESUMO

CREB-binding protein (CBP) is a lysine acetyltransferase that regulates transcription by acetylating histone and non-histone substrates. Defects in CBP activity are associated with hematologic malignancies, neurodisorders, and congenital malformations. Sensitive and quantitative enzymatic assays are essential to better characterize the pathophysiological features of CBP. We describe a sensitive nonradioactive method to measure purified and immunopurified cellular CBP enzymatic activity through rapid reverse phase-ultra-fast liquid chromatography (RP-UFLC) analysis of fluorescent histone H3 peptide substrates. The applicability and biological relevance of the assay are supported by kinetic, inhibition, and immunoprecipitation studies. More broadly, this approach could be easily adapted to assay other lysine acetyltransferases or methyltransferases.


Assuntos
Proteína de Ligação a CREB/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/metabolismo , Histonas/química , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Corantes Fluorescentes/química , Humanos , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA