Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 230(2): 318-26, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24962629

RESUMO

Flexor tendon injuries caused by deep lacerations to the hands are a challenging problem as they often result in debilitating adhesions that prevent the movement of the afflicted fingers. Evidence exists that tendon adhesions as well as scarring throughout the body are largely precipitated by the pleiotropic growth factor, Transforming Growth Factor Beta 1(TGF-ß1), but the effects of TGF-ß1 are poorly understood in tendon healing. Using an in vitro model of tendon healing, we previously found that TGF-ß1 causes gene expression changes in tenocytes that are consistent with scar tissue and adhesion formation, including upregulation of the anti-fibrinolytic protein, PAI-1. Therefore, we hypothesized that TGF-ß1 contributes to scarring and adhesions by reducing the activity of proteases responsible for ECM degradation and remodeling, such as plasmin and MMPs, via upregulation of PAI-1. To test our hypothesis, we examined the effects of TGF-ß1 on the protease activity of tendon cells. We found that flexor tendon tenocytes treated with TGF-ß1 had significantly reduced levels of active MMP-2 and plasmin. Interestingly, the effects of TGF-ß1 on protease activity were completely abolished in tendon cells from homozygous plasminogen activator inhibitor 1 (PAI-1) knockout (KO) mice, which are unable to express PAI-1. Our findings support the hypothesis that TGF-ß1 induces PAI-1, which suppresses plasmin and plasmin-mediated MMP activity, and provide evidence that PAI-1 may be a novel therapeutic target for preventing adhesions and promoting a scarless, regenerative repair of flexor tendon injuries.


Assuntos
Fibrinolisina/metabolismo , Metaloproteinases da Matriz/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Serpina E2/metabolismo , Tendões/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização/fisiologia , Animais , Células Cultivadas , Fibronectinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tendões/citologia
2.
J Orthop Res ; 38(1): 43-58, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424116

RESUMO

Injuries to flexor tendons can be complicated by fibrotic adhesions, which severely impair the function of the hand. Plasminogen activator inhibitor 1 (PAI-1/SERPINE1), a master suppressor of fibrinolysis and protease activity, is associated with adhesions. Here, we used next-generation RNA sequencing (RNA-Seq) to assess genome-wide differences in messenger RNA expression due to PAI-1 deficiency after zone II flexor tendon injury. We used the ingenuity pathway analysis to characterize molecular pathways and biological drivers associated with differentially expressed genes (DEG). Analysis of hundreds of overlapping and DEG in PAI-1 knockout (KO) and wild-type mice (C57Bl/6J) during tendon healing revealed common and distinct biological processes. Pathway analysis identified cell proliferation, survival, and senescence, as well as chronic inflammation as potential drivers of fibrotic healing and adhesions in injured tendons. Importantly, we identified the activation of PTEN signaling and the inhibition of FOXO1-associated biological processes as unique transcriptional signatures of the healing tendon in the PAI-1/Serpine1 KO mice. Further, transcriptomic differences due to the genetic deletion of PAI-1 were mechanistically linked to PI3K/Akt/mTOR, PKC, and MAPK signaling cascades. These transcriptional observations provide novel insights into the biological roles of PAI-1 in tendon healing and could identify therapeutic targets to achieve scar-free regenerative healing of tendons. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:43-58, 2020.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/fisiologia , Traumatismos dos Tendões/fisiopatologia , Transcriptoma , Cicatrização , Animais , Proteína Forkhead Box O1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/fisiologia , Proteína Quinase C/fisiologia
3.
Sci Rep ; 8(1): 5810, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643421

RESUMO

Injuries to flexor tendons can be complicated by fibrotic adhesions, which severely impair the function of the hand. Adhesions have been associated with TGF-ß1, which causes upregulation of PAI-1, a master suppressor of protease activity, including matrix metalloproteinases (MMP). In the present study, the effects of inhibiting PAI-1 in murine zone II flexor tendon injury were evaluated utilizing knockout (KO) mice and local nanoparticle-mediated siRNA delivery. In the PAI-1 KO murine model, reduced adherence of injured tendon to surrounding subcutaneous tissue and accelerated recovery of normal biomechanical properties compared to wild type controls were observed. Furthermore, MMP activity was significantly increased in the injured tendons of the PAI-1 KO mice, which could explain their reduced adhesions and accelerated remodeling. These data demonstrate that PAI-1 mediates fibrotic adhesions in injured flexor tendons by suppressing MMP activity. In vitro siRNA delivery to silence Serpine1 expression after treatment with TGF-ß1 increased MMP activity. Nanoparticle-mediated delivery of siRNA targeting Serpine1 in injured flexor tendons significantly reduced target gene expression and subsequently increased MMP activity. Collectively, the data demonstrate that PAI-1 can be a druggable target for treating adhesions and accelerating the remodeling of flexor tendon injuries.


Assuntos
Metaloproteinases da Matriz/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidores de Serina Proteinase/metabolismo , Traumatismos dos Tendões/patologia , Animais , Modelos Animais de Doenças , Fibrose/patologia , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Serpina E2/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA