Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(8): 3679-3691, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780329

RESUMO

We set out to design and synthesize bipodal ligands with the phenyl group as the spacer and varied the substitution on the spacer between ortho (L1), meta (L2), and para (L3). The respective ligands and complexes containing either p-cymene (PL1-PL3) or benzene (BL1-BL3) as the arene unit were synthesized and characterized successfully. The influence of the ligands due to substitution change on their coordination behavior was quite minimal; however, the differences were seen in the anticancer activity of the complexes. DFT studies revealed the structural variations between the three different substitutions, which was further confirmed by single-crystal X-ray diffraction studies. The anticancer activity of the complexes could be correlated with their rate of hydrolysis and their lipophilicity index as determined by UV-visible spectroscopy. The cell death mechanism of the active complexes was deduced to be apoptotic via staining assays, flow cytometry, and Western blot analysis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Linhagem Celular Tumoral , Antineoplásicos/química , Complexos de Coordenação/química , Ligantes , Cimenos , Rutênio/química
2.
Inorg Chem ; 62(30): 11761-11774, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37459067

RESUMO

Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1-6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7--12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a "S" atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7-12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 µM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Animais , Camundongos , Ligantes , Complexos de Coordenação/química , Cimenos/farmacologia , Cimenos/química , Apoptose , Antineoplásicos/química , Rutênio/farmacologia , Rutênio/química , Linhagem Celular Tumoral
3.
J Fluoresc ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642776

RESUMO

A novel fluorescence chemosensor BDP (2-(1-(benzothiazol-2-yl)-5-(4-(diphenylamino)phenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol) has been synthesized and its sensing behavior has been screened towards various cations by absorption, emission and mass spectroscopic techniques. The probe BDP detects Cu2+ ions preferentially over other metal ions, and the resulting BDP-Cu2+ ensemble acts as a secondary sensor for cyanide anion detection over other anions. The fluorescence intensity of the probe BDP is quenched when it comes into contact with Cu2+ ions, but it is increased reversibly when it comes into contact with cyanide anion, according to spectroscopic measurements. Along with this, optical studies indicate that the sensor BDP has capability to sense Cu2+ and CN- ions selectively over other examined competitive ions with the LOD of 2.57×10-8 M and 2.98×10-8 M respectively. The detection limit of Cu2+ ions is lower than the WHO recommended Cu2+ ions concentration (31.5 µM) in drinking water. On the basis of "on-off-on" fluorescence change of the probe BDP upon interaction with Cu2+ and CN- ions, a possible mechanism for this selective sensing behavior was presented and IMPLICATION logic gate was successfully designed. Furthermore, cell imaging investigations were used to investigate the probe BDP's biological applicability.

4.
Adv Exp Med Biol ; 1408: 49-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093421

RESUMO

Catecholamine stimulation over adrenergic receptors results in a state of hypercoagulability. Chronic stress involves the release and increase in circulation of catecholamines and other stress related hormones. Numerous observational studies in human have related stressful scenarios to several coagulation variables, but controlled stimulation with agonists or antagonists to adrenergic receptors are scarce. This systematic review is aimed at presenting an updated appraisal of the effect of adrenergic receptor modulation on variables related to human hemostasis by systematically reviewing the effect of adrenergic receptor-targeting drugs on scale variables related to hemostasis. By searching 3 databases for articles published between January 1st 2011 and February 16th, 2022 reporting effects on coagulation parameters from stimulation with α- or ß-adrenergic receptor targeting drugs in humans regardless of baseline condition, excluding records different from original research and those not addressing the main aim of this systematic review. Risk of bias assessed using the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2). Tables describing a pro-thrombotic anti-fibrinolytic state induced after ß-adrenergic receptor agonist stimulation and the opposite after α1-, ß-adrenergic receptor antagonist stimulation were synthesized from 4 eligible records by comparing hemostasis-related variables to their baseline. Notwithstanding this low number of records, experimental interventions included were sound and mostly unbiased, results were coherent, and outcomes were biologically plausible. In summary, this systematic review provides a critical systematic assessment and an updated elaboration, and its shortcomings highlight the need for further investigation in the field of hematology.


Assuntos
Adrenérgicos , Hemostasia , Receptores Adrenérgicos , Catecolaminas , Receptores Adrenérgicos/metabolismo , Adrenérgicos/uso terapêutico , Hemostasia/efeitos dos fármacos , Humanos , Estresse Fisiológico , Coagulação Sanguínea
5.
Adv Exp Med Biol ; 1408: 25-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093420

RESUMO

Hemostasis preserves blood fluidity and prevents its loss after vessel injury. The maintenance of blood fluidity requires a delicate balance between pro-coagulant and fibrinolytic status. Endothelial cells (ECs) in the inner face of blood vessels maintain hemostasis through balancing anti-thrombotic and pro-fibrinolytic activities. Dyslipidemias are linked to hemostatic alterations. Thus, it is necessary a better understanding of the underlying mechanisms linking hemostasis with dyslipidemia. Statins are drugs that decrease cholesterol levels in the blood and are the gold standard for treating hyperlipidemias. Statins can be classified into natural and synthetic molecules, approved for the treatment of hypercholesterolemia. The classical mechanism of action of statins is by competitive inhibition of a key enzyme in the synthesis pathway of cholesterol, the HMG-CoA reductase. Statins are frequently administrated by oral ingestion and its interaction with other drugs and food supplements is associated with altered bioavailability. In this review we deeply discuss the actions of statins beyond the control of dyslipidemias, focusing on the actions in thrombotic modulation, vascular and cardiovascular-related diseases, metabolic diseases including metabolic syndrome, diabetes, hyperlipidemia, and hypertension, and chronic diseases such as cancer, chronic obstructive pulmonary disease, and chronic kidney disease. Furthermore, we were prompted to delved deeper in the molecular mechanisms by means statins regulate coagulation acting on liver, platelets, and endothelium. Clinical evidence show that statins are effective regulators of dyslipidemia with a high impact in hemostasis regulation and its deleterious consequences. However, studies are required to elucidate its underlying molecular mechanism and improving their therapeutical actions.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipidemias , Trombose , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Células Endoteliais , Hemostasia , Trombose/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Colesterol , Dislipidemias/tratamento farmacológico
6.
Adv Exp Med Biol ; 1408: 163-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093427

RESUMO

Dexmedetomidine is an adrenergic receptor agonist that has been regarded as neuroprotective in several studies without an objective measure to it. Thus, the aim of this meta-analysis was to analyze and quantify the current evidence for the neuroprotective effects of dexmedetomidine in animals. The search was performed by querying the National Library of Medicine. Studies were included based on their language, significancy of their results, and complete availability of data on animal characteristics and interventions. Risk of bias was assessed using SYRCLE's risk of bias tool and certainty was assessed using the ARRIVE Guidelines 2.0. Synthesis was performed by calculating pooled standardized mean difference and presented in forest plots and tables. The number of eligible records included per outcome is the following: 22 for IL-1ß, 13 for IL-6, 19 for apoptosis, 7 for oxidative stress, 7 for Escape Latency, and 4 for Platform Crossings. At the cellular level, dexmedetomidine was found protective against production of IL-1ß (standardized mean difference (SMD) = - 4.3 [- 4.8; - 3.7]) and IL-6 (SMD = - 5.6 [- 6.7; - 4.6]), apoptosis (measured through TUNEL, SMD = - 6.0 [- 6.8; - 4.6]), and oxidative stress (measured as MDA production, SMD = - 2.0 [- 2.4; - 1.4]) exclusively in the central nervous system. At the organism level, dexmedetomidine improved behavioral outcomes measuring escape latency (SMD = - 2.4 [- 3.3; - 1.6]) and number of platform crossings (SMD = 9.1 [- 6.8; - 11.5]). No eligible study had high risk of bias and certainty was satisfactory for reproducibility in all cases. This meta-analysis highlights the complexity of adrenergic stimulation and sheds light into the mechanisms potentiated by dexmedetomidine, which could be exploited for improving current neuroprotective formulations.


Assuntos
Dexmedetomidina , Fármacos Neuroprotetores , Estados Unidos , Interleucina-6 , Reprodutibilidade dos Testes
7.
J Mol Struct ; 1250: 131782, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34697505

RESUMO

Two heterocyclic azole compounds, 3-(2,3-dihydrobenzo[d]thiazol-2-yl)-4H-chromen-4-one (SVS1) and 5-(1H-indol-3-yl)-4-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (SVS2) were obtained unexpectedly from 2-aminothiophenol and 4-oxo-4H-chromene-3-carbaldehyde (for SVS1), and (E)-2-((1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide in the presence of anhydrous FeCl3 (for SVS2), respectively. The compounds were well characterized by analytical and spectroscopic tools. The molecular structures of both the compounds were determined by single crystal X-ray diffraction (XRD) study. The results obtained from density functional theory (DFT) study revealed the molecular geometry and electron distribution of the compounds, which were correlated well with the three-dimensional structures obtained from the single crystal XRD. DMol3 was used to calculate quantum chemical parameters [chemical potential (µ), global hardness (η), global softness (σ), absolute electronegativity (χ) and electrophilicity index (ω)] of SVS1 and SVS2. Molecular docking study was performed to elucidate the binding ability of SVS1 and SVS2 with SARS-CoV-2 main protease and human angiotensin-converting enzyme-2 (ACE-2) molecular targets. Interestingly, the binding efficiency of the compounds with the molecular targets was comparable with that of remdesivir (SARS-CoV-2), chloroquine and hydroxychloroquine. SVS1 showed better docking energy than SVS2. The molecular docking study was complemented by molecular dynamics simulation study of SARS-CoV-2 main protease-SVS1 complex, which further exemplified the binding ability of SVS1 with the target. In addition, SVS1, SVS2 and cisplatin were assessed for their cytotoxicity against a panel of three human cancer cells such as HepG-2 (hepatic carcinoma), T24 (bladder) and EA.hy926 (endothelial), as well as Vero (kidney epithelial cells extracted from an African green monkey) normal cells using MTT assay. The results showed that SVS2 has significant cytotoxicity against HepG-2 and EA.hy926 cells with the IC50 values of 33.8 µM (IC50 = 49.9 µM-cisplatin and 8.6 µM-doxorubicin) and 29.2 (IC50 = 26.6 µM-cisplatin and 3.8 µM-doxorubicin), respectively.

8.
Eur Biophys J ; 50(8): 1069-1081, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455461

RESUMO

The sensitivity of protein molecular structures makes them susceptible to aggregation in conditions unfavorable for the maintenance of their native folds. The aggregation of proteins leads to many disorders, but the inhibition of amyloid fibril formation using metal-containing small molecules is gaining popularity. Herein we report the effect of nickel(II) complexes (N1, N2, N3, and N4) bearing thiosemicarbazones on the inhibition of amyloid fibril formation by insulin. The interactions of the complexes with amyloid fibrils were investigated using various biophysical techniques, including light scattering, intrinsic fluorescence assay, thioflavin T (ThT) assay, and Fourier transform-infrared spectroscopy. The results revealed that the phenyl-substituted N3 was an efficient inhibitor of amyloid fibril formation and maintained the insulin in its native structure despite conditions promoting fibrillation. Nickel(II) complexes containing indole based thiosemicarbazones were efficient in inhibiting the amyloid fibril formation and maintaining the insulin in its native structure in unfavorable conditions.


Assuntos
Amiloide , Tiossemicarbazonas , Fluorescência , Insulina , Níquel , Tiossemicarbazonas/farmacologia
9.
Inorg Chem Commun ; 134: 109029, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729032

RESUMO

A water-soluble binuclear organometallic Ru-p-cymene complex [Ru(η6-p-cymene)(η2-L)]2 (1) was prepared from (E)-2-((1H-indol-3-yl)methylene)-N-phenylhydrazine-1-carbothioamide (HL) and [RuCl2(p-cymene)]2 in methanol at room temperature under inert atmosphere. The structure of binuclear complex was analyzed by UV-Visible, FT-IR, NMR and mass spectroscopic methods. The solid-state structure of the complex was ascertained by single crystal X-ray diffraction technique. The complex exhibited pseudo-octahedral (piano-stool) geometry around Ru(II) ion. The cytotoxic property of the ligand and complex along with cisplatin was investigated against A549-lung, MCF-7-breast, HeLa-cervical, HepG-2-liver, T24-urinary bladder and EA.hy926-endothelial cancer cells, and Vero-kidney epithelial normal cells. The complex exhibited superior activity than cisplatin against A549, HeLa and T24 cancer cells with the IC50 values of 7.70, 11.2, and 5.05 µM, respectively. The complexes were cytotoxic specifically to the cancer cells. Molecular docking studies showed good binding potential of the ligand and complex with the spike protein and main protease of SARS-CoV-2, indicating the promising role of these compounds as antiviral compounds.

10.
Lab Invest ; 100(5): 789, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31942005

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Lab Invest ; 100(2): 234-249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31444399

RESUMO

Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Endotoxemia , Nefropatias/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Endotélio Vascular/fisiopatologia , Endotoxemia/metabolismo , Endotoxemia/mortalidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/fisiopatologia , Masculino , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/genética
12.
J Cell Physiol ; 234(3): 2037-2050, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30343491

RESUMO

Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Cátion TRPM/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Modelos Biológicos , Gradação de Tumores , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Regulação para Cima
13.
Lab Invest ; 99(3): 421-437, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664710

RESUMO

Systemic inflammatory diseases enhance circulating oxidative stress levels, which results in the oxidation of circulating high-density lipoprotein (oxHDL). Endothelial cell function can be negatively impacted by oxHDL, but the underlying mechanisms for this remain unclear. Some reports indicate that the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is also a receptor for oxHDL. However, it is unknown if oxHDL induces increased LOX-1 expression at the plasma membrane, as an event that supports endothelial dysfunction. Therefore, the aims of this study were to determine if oxHDL induces plasma-membrane level changes in LOX-1 and, if so, to describe the underlying mechanisms in endothelial cells. Our results demonstrate that the incubation of arterial or vein endothelial cells with oxHDL (and not HDL) induces the increase of LOX-1 expression at the plasma membrane; effect prevented by LOX-1 inhibition. Importantly, same results were observed in endothelial cells from oxHDL-treated rats. Furthermore, the observed oxHDL-induced LOX-1 expression is abolished by the down-regulation of NOX-2 expression with siRNA (and no others NOX isoforms), by the pharmacological inhibition of NAD(P)H oxidase (with DPI or apocynin) or by the inhibition of NF-κB transcription factor. Coherently, LOX-1 expression is augmented by the incubation of endothelial cells with H2O2 or GSSG even in absence of oxHDL, indicating that the NOX-2/ROS/ NF-κB axis is involved. Interestingly, oxHDL incubation also increases TNF-α expression, cytokine that induces LOX-1 expression. Thus, our results suggest a positive feedback mechanism for LOX-1 receptor during inflammatory condition where an oxidative burst will generate oxHDL from native HDL, activating LOX-1 receptor which in turn will increase the expression of NOX-2, TNF-α and LOX-1 receptor at the plasma membrane. In conclusion, oxHDL-induced translocation of LOX-1 to the plasma membrane could constitute an induction mechanism of endothelial dysfunction in systemic inflammatory diseases.


Assuntos
Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Receptores Depuradores Classe E/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/metabolismo , Masculino , NADPH Oxidase 2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
Lab Invest ; 99(8): 1173-1192, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30911151

RESUMO

Sepsis syndrome is the leading cause of mortality in critically ill patients admitted to intensive care. However, current therapies for sepsis treatment are unsatisfactory, and the mortality rate is still high. The main pathological characteristics observed during sepsis syndrome and endotoxemia include hypotension, tachycardia, multiple organ dysfunction syndrome (MODS), tissue damage, and cytokine and oxidative bursts. These conditions severely decrease the survival rates of endotoxemic patients. As a consequence of endotoxemia, large amounts of endotoxin circulate in the bloodstream throughout the vascular system and interact directly with endothelial cells that cover the inner wall of blood vessels. Endothelial cells exposed to lipopolysaccharides exhibit conversion to activated fibroblasts. By means of endotoxin-induced endothelial fibrosis, endothelial cells downregulate the expression of endothelial proteins and express fibrotic and ECM markers throughout endothelial protein expression reprogramming. Although endotoxin-induced endothelial fibrosis should, in theory, be detrimental to endothelial vascular function, the role of endothelial fibrosis in sepsis syndrome or endotoxemia is not known. Therefore, we employed a rat model to investigate whether the inhibition of endotoxin-induced endothelial fibrosis protects against endotoxemia and whether this inhibition increases survival. Our results show that the inhibition of endotoxin-induced endothelial fibrosis reduced both hypotension and tachycardia. Endotoxemia-induced MODS was also decreased when endothelial fibrosis was inhibited; treated rats showed normal kidney and liver function, inhibition of muscle mass wasting and normal glycemia. Liver and kidney histology was preserved, and organ fibrosis and fibrotic protein expression were reduced. Furthermore, pro-inflammatory cytokine secretion and NOX-2-mediated oxidative stress bursts were decreased when endothelial fibrosis was inhibited. Remarkably, the risk of death associated with sepsis syndrome at early and late time points was decreased when endotoxemia-induced endothelial fibrosis was inhibited, and a significant increase in survival was observed. These results reveal a potential novel treatment strategy to protect against sepsis syndrome and endotoxemia.


Assuntos
Citocinas/metabolismo , Endotoxemia/metabolismo , Fibrose/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Endotoxemia/mortalidade , Hipotensão , Masculino , Ratos , Ratos Sprague-Dawley , Taquicardia
15.
Biometals ; 31(4): 517-525, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574625

RESUMO

Tumorigenic cell lines are more susceptible to [Re6Se8I6]3- cluster-induced death than normal cells, becoming a novel candidate for cancer treatment. Still, the feasibility of using this type of molecules in human patients remains unclear and further pharmacokinetics analysis is needed. Using coupled plasma optical emission spectroscopy, we determined the Re-cluster tissue content in injected mice, as a biodistribution measurement. Our results show that the Re-cluster successfully reaches different tissues, accumulating mainly in heart and liver. In order to dissect the mechanism underlying cluster biodistribution, we used three different experimental approaches. First, we evaluate the degree of lipophilicity by determining the octanol/water partition coefficient. The cluster mostly remained in the octanol fraction, with a coefficient of 1.86 ± 0.02, which indicates it could potentially cross cell membranes. Then, we measured the biological membrane penetration through a parallel artificial membrane permeability assays (PAMPA) assay. The Re-cluster crosses the artificial membrane, with a coefficient of 122 nm/s that is considered highly permeable. To evaluate a potential application of the Re-cluster in central nervous system (CNS) tumors, we analyzed the cluster's brain penetration by exposing cultured blood-brain-barrier (BBB) cells to increasing concentrations of the cluster. The Re-cluster effectively penetrates the BBB, reaching nearly 30% of the brain side after 24 h. Thus, our results indicate that the Re-cluster penetrates biological membranes reaching different target organs-most probably due to its lipophilic properties-becoming a promising anti-cancer drug with high potential for CNS cancer's diagnosis and treatment.


Assuntos
Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Complexos de Coordenação/farmacologia , Rênio/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Selênio/farmacologia , Distribuição Tecidual/efeitos dos fármacos
16.
Molecules ; 22(7)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28678175

RESUMO

The molybdenum cluster [Mo6Cl14]2- is a fluorescent component with potential for use in cell labelling and pharmacology. Biological safety and antiviral properties of the cluster are as yet unknown. Here, we show the effect of acute exposition of human cells and red blood cells to the molybdenum cluster and its interaction with proteins and antiviral activity in vitro. We measured cell viability of HepG2 and EA.hy926 cell lines exposed to increasing concentrations of the cluster (0.1 to 250 µM), by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Hemolysis and morphological alterations of red blood cells, obtained from healthy donors, exposed to the cluster (10 to 200 µM) at 37 °C were analyzed. Furthermore, quenching of tryptophan residues of albumin was performed. Finally, plaque formation by rotavirus SA11 in MA104 cells treated with the cluster (100 to 300 µM) were analyzed. We found that all doses of the cluster showed similar cell viability, hemolysis, and morphology values, compared to control. Quenching of tryptophan residues of albumin suggests a protein-cluster complex formation. Finally, the cluster showed antiviral activity at 300 µM. These results indicate that the cluster [Mo6Cl14]2- could be intravenously administered in animals at therapeutic doses for further in vivo studies and might be studied as an antiviral agent.


Assuntos
Antivirais/farmacologia , Molibdênio/química , Compostos Organometálicos/farmacologia , Rotavirus/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise , Células Hep G2 , Humanos , Técnicas In Vitro , Compostos Organometálicos/química , Albumina Sérica Humana/metabolismo
17.
Biometals ; 29(4): 743-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27460450

RESUMO

Trypanosoma cruzi (T. cruzi) is the parasite that causes Chagas disease. Nifurtimox is the most used drug against the T. cruzi, this drug increases intermediaries nitro group, being mainly responsible for the high toxicity component, for this reason it is important to study new organic compounds and thus improve therapeutic strategies against Chagas disease. The electronic effects of ferrocenyl and cyrhetrenyl fragments were investigated by DFT calculation. A close correlation was found between HOMO-LUMO gap of nitro radical NO 2 (-) with the experimental reduction potential found for nitro group and IC50 of two forms the T. cruzi (epimastigote and trypomastigote). The IC50 on human hepatoma cells is higher for both compounds compared to IC50 demonstrated in the two forms the T. cruzi, and additionally show reactive oxygen species release. The information obtained in this paper could generate two new drugs with anti-T. cruzi activity, but additional studies are needed.


Assuntos
Compostos Ferrosos/farmacologia , Compostos Organometálicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rênio/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Compostos Ferrosos/química , Células Hep G2 , Humanos , Compostos Organometálicos/química , Testes de Sensibilidade Parasitária , Rênio/química , Tripanossomicidas/química , Trypanosoma cruzi/metabolismo
18.
Int J Mol Sci ; 17(2): 260, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907262

RESUMO

Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Caspases/metabolismo , Chalconas/farmacologia , Neoplasias Hepáticas/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Infect Immun ; 82(9): 3678-86, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24935972

RESUMO

During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor ß1 (TGF-ß1) and TGF-ß2. However, whether TGF-ß1 and TGF-ß2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-ß receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-ß production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-ß1 and TGF-ß2. Endotoxin-treated ECs induced the expression and secretion of TGF-ß1 and TGF-ß2. TGF-ß1 and TGF-ß2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-ß1 and TGF-ß2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-ß secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases.


Assuntos
Células Endoteliais/metabolismo , Endotoxinas/metabolismo , Fibrose/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Actinas/genética , Actinas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Regulação para Baixo/genética , Endotoxinas/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
20.
Lab Invest ; 94(10): 1068-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25068653

RESUMO

During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-ß1 and TGF-ß2 and p38 MAPK phosphorylation. Downregulation of TGF-ß1 and TGF-ß2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-ß secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-ß-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.


Assuntos
Células Endoteliais/fisiologia , Transição Epitelial-Mesenquimal , Estresse Oxidativo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Miofibroblastos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA