Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Infect Dis ; 23(1): 72, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747133

RESUMO

BACKGROUND: Declines in malaria burden in Uganda have slowed. Modelling predicts that indoor residual spraying (IRS) and mass drug administration (MDA), when co-timed, have synergistic impact. This study investigated additional protective impact of population-based MDA on malaria prevalence, if any, when added to IRS, as compared with IRS alone and with standard of care (SOC). METHODS: The 32-month quasi-experimental controlled before-and-after trial enrolled an open cohort of residents (46,765 individuals, 1st enumeration and 52,133, 4th enumeration) of Katakwi District in northeastern Uganda. Consented participants were assigned to three arms based on residential subcounty at study start: MDA+IRS, IRS, SOC. IRS with pirimiphos methyl and MDA with dihydroartemisinin- piperaquine were delivered in 4 co-timed campaign-style rounds 8 months apart. The primary endpoint was population prevalence of malaria, estimated by 6 cross-sectional surveys, starting at baseline and preceding each subsequent round. RESULTS: Comparing malaria prevalence in MDA+IRS and IRS only arms over all 6 surveys (intention-to-treat analysis), roughly every 6 months post-interventions, a geostatistical model found a significant additional 15.5% (95% confidence interval (CI): [13.7%, 17.5%], Z = 9.6, p = 5e-20) decrease in the adjusted odds ratio (aOR) due to MDA for all ages, a 13.3% reduction in under 5's (95% CI: [10.5%, 16.8%], Z = 4.02, p = 5e-5), and a 10.1% reduction in children 5-15 (95% CI: [8.5%, 11.8%], Z = 4.7, p = 2e-5). All ages residents of the MDA + IRS arm enjoyed an overall 80.1% reduction (95% CI: [80.0%, 83.0%], p = 0.0001) in odds of qPCR confirmed malaria compared with SOC residents. Secondary difference-in-difference analyses comparing surveys at different timepoints to baseline showed aOR (MDA + IRS vs IRS) of qPCR positivity between 0.28 and 0.66 (p < 0.001). Of three serious adverse events, one (nonfatal) was considered related to study medications. Limitations include the initial non-random assignment of study arms, the single large cluster per arm, and the lack of an MDA-only arm, considered to violate equipoise. CONCLUSIONS: Despite being assessed at long time points 5-7 months post-round, MDA plus IRS provided significant additional protection from malaria infection over IRS alone. Randomized trials of MDA in large areas undergoing IRS recommended as well as cohort studies of impact on incidence. TRIAL REGISTRATION: This trial was retrospectively registered 11/07/2018 with the Pan African Clinical Trials Registry (PACTR201807166695568).


Assuntos
Inseticidas , Malária , Criança , Humanos , Adolescente , Administração Massiva de Medicamentos , Uganda/epidemiologia , Prevalência , Estudos Transversais , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos
2.
Malar J ; 18(1): 160, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060554

RESUMO

BACKGROUND: Control programmes for high burden countries are tasked with charting effective multi-year strategies for malaria control within significant resource constraints. Synergies between different control tools, in which more than additive benefit accrues from interventions used together, are of interest because they may be used to obtain savings or to maximize health impact per expenditure. One commonly used intervention in sub-Saharan Africa is indoor residual spraying (IRS), typically deployed through a mass campaign. While possible synergies between IRS and long-lasting insecticide-treated nets (LLINs) have been investigated in multiple transmission settings, coordinated synergy between IRS and other mass medical distribution campaigns have not attracted much attention. Recently, a strong timing-dependent synergy between an IRS campaign and a mass drug administration (MDA) was theoretically quantified. These synergistic benefits likely differ across settings depending on transmission intensity and its overall seasonal pattern. METHODS: High coverage interventions are modelled in different transmission environments using two methods: a Ross-Macdonald model variant and openmalaria simulations. The impact of each intervention strategy was measured through its ability to prevent host infections over time, and the effects were compared to the baseline case of deploying interventions in isolation. RESULTS: By modelling IRS and MDA together and varying their deployment times, a strong synergy was found when the administered interventions overlapped. The added benefit of co-timed interventions was robust to differences in the models. In the Ross-Macdonald model, the impact compared was roughly double the sequential interventions in most transmission settings. Openmalaria simulations of this medical control augmentation of an IRS campaign show an even stronger response with the same timing relationship. CONCLUSIONS: The strong synergies found for these control tools between the complementary interventions demonstrate a general feature of effective concurrent campaign-style vector and medical interventions. A mass treatment campaign is normally short-lived, especially in higher transmission settings. When co-timed, the rapid clearing of the host parasite reservoir via chemotherapy is protected from resurgence by the longer duration of the vector control. An effective synchronous treatment campaign has the potential to greatly augment the impact of indoor residual spraying. Mass screening and treatment (MSAT) with highly sensitive rapid diagnostic tests may demonstrate a comparable trend while mass LLIN campaigns may similarly coordinate with MDA/MSAT.


Assuntos
Promoção da Saúde , Inseticidas/administração & dosagem , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Anopheles , Humanos , Malária/transmissão , Modelos Estatísticos , Mosquitos Vetores , Fatores de Tempo
3.
J Am Chem Soc ; 132(1): 303-8, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19994901

RESUMO

Many RNAs undergo large conformational changes in response to the binding of proteins and small molecules. However, when RNA functional dynamics occur in the nanosecond-microsecond time scale, they become invisible to traditional solution NMR relaxation methods. Residual dipolar coupling methods have revealed the presence of extensive nanosecond-microsecond domain motions in HIV-1 TAR RNA, but this technique lacks information on the rates of motions. We have used solid-state deuterium NMR to quantitatively describe trajectories of key residues in TAR by exploiting the sensitivity of this technique to motions that occur in the nanosecond-microsecond regime. Deuterium line shape and relaxation data were used to model motions of residues within the TAR binding interface. The resulting motional models indicate two functionally essential bases within the single-stranded bulge sample both the free and Tat-bound conformations on the microsecond time scale in the complete absence of the protein. Thus, our results strongly support a conformational capture mechanism for recognition: the protein does not induce a new RNA structure, but instead captures an already-populated conformation.


Assuntos
RNA Viral/química , HIV-1 , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Movimento , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Soluções , Fatores de Tempo
4.
J Biomol NMR ; 45(1-2): 133-42, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19669102

RESUMO

The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in (2)H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state (13)C relaxation measurements, we establish that ns-micros motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration.


Assuntos
Repetição Terminal Longa de HIV , HIV-1/genética , Ressonância Magnética Nuclear Biomolecular/métodos , RNA Viral/química , Água/química , Deutério , Conformação de Ácido Nucleico
6.
J Phys Chem B ; 114(48): 15991-6002, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21067190

RESUMO

Functional RNA molecules are conformationally dynamic and sample a multitude of dynamic modes over a wide range of frequencies. Thus, a comprehensive description of RNA dynamics requires the inclusion of a broad range of motions across multiple dynamic rates which must be derived from multiple spectroscopies. Here we describe a slow conformational exchange theoretical approach to combining the description of local motions in RNA that occur in the nanosecond to microsecond window and are detected by solid-state NMR with nonrigid rotational motion of the HIV-1 transactivation response element (TAR) RNA in solution as observed by solution NMR. This theoretical model unifies the experimental results generated by solution and solid-state NMR and provides a comprehensive view of the dynamics of HIV-1 TAR RNA, a well-known paradigm of an RNA where function requires extensive conformational rearrangements. This methodology provides a quantitative atomic level view of the amplitudes and rates of the local and collective displacements of the TAR RNA molecule and provides directly motional parameters for the conformational capture hypothesis of this classical RNA-ligand interaction.


Assuntos
Repetição Terminal Longa de HIV , RNA/química , Difusão , Modelos Moleculares , Movimento (Física) , Movimento , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , RNA/metabolismo , Rotação , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA