Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108682

RESUMO

Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2-4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S.


Assuntos
Sulfeto de Hidrogênio , Naftoquinonas , Compostos de Sulfidrila/química , Tiossulfatos , Cisteína/metabolismo , Sulfeto de Hidrogênio/química , Oxirredução , Glutationa/metabolismo , Proteínas/metabolismo , Oxigênio , Naftoquinonas/metabolismo
2.
J Appl Biomech ; 35(4): 297-302, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141450

RESUMO

Girls' lacrosse participation and head injury rates have increased within the past decade. In response, optional headgear was implemented following the recently developed ASTM International (ASTM) lacrosse headgear performance standards. It remains unknown how lacrosse headgear responds to blunt impacts after use. Our purpose was to compare the peak linear acceleration (PLA) between girls' lacrosse headgear conditions (pristine and used) during blunt impacts. Pristine headgear (n=10) were tested in their original condition and used headgear (n=10) were worn for an entire competitive season. A Cadex Monorail Impactor impacted all headgear following ASTM standards (F1446-15b, F2220-15, and F3137-15) in the required testing locations. A 2 x 7 repeated measures ANOVA compared PLA among headgear conditions and impact locations with a simple effects analysis planned comparison. There was no difference between headgear conditions for PLA (Pristine: 47.12 ± 13.92g; Used: 46.62 ± 14.84g; F = 2.11, p > 0.05). A main effect for impact location (F = 983.52, p < 0.01), and an interaction effect of condition and impact location (F = 12.79, p < 0.01) were observed. All headgear, regardless of condition, met the ASTM performance standard. This suggests that headgear performance may not degrade subsequent to a single season of high school girl's lacrosse.


Assuntos
Traumatismos Craniocerebrais/prevenção & controle , Análise de Falha de Equipamento , Dispositivos de Proteção da Cabeça , Esportes com Raquete/lesões , Equipamentos Esportivos , Desenho de Equipamento , Feminino , Humanos
3.
Mil Med ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043211

RESUMO

INTRODUCTION: The purpose of this study was to compare the rotational blunt impact performance of an anthropomorphic test device (ATD: male 50% Hybrid III head and neck) headform donning an Advanced Combat Helmet (ACH) between conditions in which the coefficient of static friction (µs) at the head-to-helmet pad interface varied. MATERIALS AND METHODS: Two ACHs (size large) were used in this study and friction was varied using polytetrafluoroethylene (PTFE), human hair, skullcap, and the native vinyl skin of the ATD. A condition in which hook and loop material adhered the headform to the liner system was also tested, resulting in a total of five conditions: PTFE, Human Hair, Skullcap, Vinyl, and Hook. Blunt impact tests with each helmet in each of the five conditions were conducted on a pneumatic linear impactor at 4.3 m/s. The ATD donning the ACH was impacted in seven locations (Crown, Front, Rear, Left Side, Right Side, Left Nape, and Right Nape). The peak resultant angular acceleration (PAA), velocity (PAV), and the Diffuse Axonal Multi-Axis, General Evaluation (DAMAGE) metric were compared between conditions. RESULTS: No pairwise differences were observed between conditions for PAA. A positive correlation was observed between mean µs and PAA at the Front (τ = 0.28; P = .044) and Rear (τ = 0.31; P = .024) impact locations. The Hook condition had a mean PAV value that was often less than the other conditions (P ≤ .024). A positive correlation was observed between mean µs and PAV at the Front (τ = 0.32; P = .019) and Right Side (τ = 0.57; P < .001) locations. The Hook condition tended to have the lowest DAMAGE value compared to the other conditions (P ≤ .032). A positive correlation was observed between the mean µs and DAMAGE at the Rear (τ = 0.60; P < .001) location. A negative correlation was observed at the Left Side (τ = -0.28; P = .040), Right Side (τ = -0.58; P < .001) and Left Nape (τ = -0.56; P < .001) locations. CONCLUSIONS: The results of this study indicate that at some impact locations kinematic responses can vary as a function of the friction at the head-to-helmet pad interface. However, a reduction in the coupling of the head-helmet pad interface did not consistently reduce head angular kinematics or measures of brain strain across impact locations. Thus, for the ACH during collision-type impacts, impact location as opposed to µs seems to have a greater influence on head kinematics and rotational-based measures of brain strain.

4.
J Biomech ; 109: 109923, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32807308

RESUMO

Reproduction of anthropomorphic test device (ATD) head impact test methods is a critical element needed to develop guidance and technologies that reduce the risk for brain injury in sport. However, there does not appear to be a consensus for reporting ATD pose and impact location for industry and researchers to follow. Thus, the purpose of this article is to explore the various methods used to report impact location and ATD head pose for sport-related head impact testing and provide recommendations for standardizing these descriptions. A database search and exclusion process identified 137 articles that met the review criteria. Only 4 of the 137 articles provided a description similar to the method we propose to describe ATD pose and impact location. We thus propose a method to unambiguously convey the impact location and pose of the ATD based on the sequence, quantifiable design, and articulation of ATD mount joints. This reporting method has been used to a limited extent in the literature, but we assert that adoption of this method will help to standardize the reporting of ATD headform pose and impact location as well as aid in the replication of impact test protocols across laboratories.


Assuntos
Lesões Encefálicas , Cabeça , Acidentes de Trânsito , Fenômenos Biomecânicos , Humanos , Manequins
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA