Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Microbiol ; 19(3): 1322-1337, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28078797

RESUMO

Sulfide mineral precipitation occurs at mid-ocean ridge (MOR) spreading centers, both in the form of plume particles and seafloor massive sulfide structures. A common constituent of MOR is the iron-bearing sulfide mineral pyrrhotite, which was chosen as a substrate for in-situ incubation studies in shallow waters of Catalina Island, CA to investigate the colonization of iron-oxidizing bacteria. Microbial community datasets were obtained from in-situ incubated pyrrhotite, allowing for direct comparison to microbial communities of iron-sulfides from active and inactive chimneys in deep-sea environments. Unclassified Gammaproteobacteria and Alphaproteobacteria (Magnetovibrio) largely dominated the bacterial community on pyrrhotite samples incubated in the water column while samples incubated at the surface sediment showed more even dominance by Deltaproteobacteria (Desulfobulbus), Gammaproteobacteria (Piscirickettsiaceae), Alphaproteobacteria (Rhodobacteraceae), and Bacteroidetes (Flavobacteriia). Cultivations that originated from pyrrhotite samples resulted in the enrichment of both, sheath-forming and stalk-forming Zetaproteobacteria. Additionally, a putative novel species of Thiomicrospira was isolated and shown to grow autotrophically with iron, indicating a new biogeochemical role for this ubiquitous microorganism.


Assuntos
Ferro/metabolismo , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo , Crescimento Quimioautotrófico/genética , Ilhas , Minerais/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética , Piscirickettsiaceae/isolamento & purificação , RNA Ribossômico 16S , Sulfetos/metabolismo
2.
Appl Environ Microbiol ; 81(17): 5927-37, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092463

RESUMO

Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides. The aim of this study was to identify highly expressed proteins associated with the electron transport chain of microaerophilic, neutrophilic FeOB. To this end, Mariprofundus ferrooxydans PV-1 was cultivated, and its proteins were extracted, assayed for redox activity, and analyzed via liquid chromatography-tandem mass spectrometry for identification of peptides. The results indicate that a cytochrome c4, cbb3-type cytochrome oxidase subunits, and an outer membrane cytochrome c were among the most highly expressed proteins and suggest an involvement in the process of aerobic, neutrophilic bacterial Fe oxidation. Proteins associated with alternative complex III, phosphate transport, carbon fixation, and biofilm formation were abundant, consistent with the lifestyle of Mariprofundus.


Assuntos
Ferro/metabolismo , Proteobactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Crescimento Quimioautotrófico , Dados de Sequência Molecular , Oxirredução , Proteobactérias/química , Proteobactérias/genética , Proteômica
3.
Int J Syst Evol Microbiol ; 65(Pt 6): 1992-1998, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25813363

RESUMO

A facultatively anaerobic bacterium, designated strain 1MBB1T, was isolated from basaltic breccia collected from 341 m below the seafloor by seafloor drilling of Rigil Guyot during Integrated Ocean Drilling Program Expedition 330. The cells were straight rods, 0.5 µm wide and 1-3 µm long, that occurred singly and in chains. Strain 1MBB1T stained Gram-positive. Catalase and oxidase were produced. The isolate grew optimally at 30 °C and pH 7.5, and could grow with up to 12 % (w/v) NaCl. The DNA G+C content was 40.5 mol%. The major cellular fatty acids were C16:1ω11c (26.5 %), anteiso-C15:0 (19.5 %), C16:0 (18.7 %) and iso-C15:0 (10.4 %), and the cell-wall diamino acid was meso-diaminopimelic acid. Endospores of strain 1MBB1T oxidized Mn(II) to Mn(IV), and siderophore production by vegetative cells was positive. Phylogenetic analysis of the 16S rRNA gene indicated that strain 1MBB1T was a member of the family Bacillaceae, with Bacillus foraminis CV53T and Bacillus novalis LMG 21837T being the closest phylogenetic neighbours (96.5 and 96.2 % similarity, respectively). This is the first novel species described from deep subseafloor basaltic crust. On the basis of our polyphasic analysis, we conclude that strain 1MBB1T represents a novel species of the genus Bacillus, for which we propose the name Bacillus rigiliprofundi sp. nov. The type strain is 1MBB1T ( = NCMA B78T = LMG 28275T).


Assuntos
Bacillus/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Microbiologia da Água , Bacillus/genética , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Manganês/metabolismo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oceano Pacífico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos/genética
4.
Appl Environ Microbiol ; 80(16): 4854-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907315

RESUMO

Seafloor basalts are widely distributed and host diverse prokaryotic communities, but no data exist concerning the metabolic rates of the resident microbial communities. We present here potential extracellular enzyme activities of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) measured on basalt samples from different locations on Loihi Seamount, HI, coupled with analysis of prokaryotic biomass and pyrosequencing of the bacterial 16S rRNA gene. The community maximum potential enzyme activity (Vmax) of LAP ranged from 0.47 to 0.90 nmol (g rock)(-1) h(-1); the Vmax for AP was 28 to 60 nmol (g rock)(-1) h(-1). The Km of LAP ranged from 26 to 33 µM, while the Km for AP was 2 to 7 µM. Bacterial communities on Loihi basalts were comprised primarily of Alpha-, Delta-, andGammaproteobacteria, Bacteroidetes, and Planctomycetes. The putative ability to produce LAP is evenly distributed across the most commonly detected bacterial orders, but the ability to produce AP is likely dominated by bacteria in the orders Xanthomonadales, Flavobacteriales, and Planctomycetales. The enzyme activities on Loihi basalts were compared to those of other marine environments that have been studied and were found to be similar in magnitude to those from continental shelf sediments and orders of magnitude higher than any measured in the water column, demonstrating that the potential for exposed basalts to transform organic matter is substantial. We propose that microbial communities on basaltic rock play a significant, quantifiable role in benthic biogeochemical processes.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/análise , Biodiversidade , Sedimentos Geológicos/química , Silicatos/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Havaí , Dados de Sequência Molecular , Filogenia
5.
Nature ; 453(7195): 653-6, 2008 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-18509444

RESUMO

Oceanic lithosphere exposed at the sea floor undergoes seawater-rock alteration reactions involving the oxidation and hydration of glassy basalt. Basalt alteration reactions are theoretically capable of supplying sufficient energy for chemolithoautotrophic growth. Such reactions have been shown to generate microbial biomass in the laboratory, but field-based support for the existence of microbes that are supported by basalt alteration is lacking. Here, using quantitative polymerase chain reaction, in situ hybridization and microscopy, we demonstrate that prokaryotic cell abundances on seafloor-exposed basalts are 3-4 orders of magnitude greater than in overlying deep sea water. Phylogenetic analyses of basaltic lavas from the East Pacific Rise (9 degrees N) and around Hawaii reveal that the basalt-hosted biosphere harbours high bacterial community richness and that community membership is shared between these sites. We hypothesize that alteration reactions fuel chemolithoautotrophic microorganisms, which constitute a trophic base of the basalt habitat, with important implications for deep-sea carbon cycling and chemical exchange between basalt and sea water.


Assuntos
Biodiversidade , Sedimentos Geológicos/microbiologia , Biologia Marinha , Silicatos , Crescimento Quimioautotrófico , Genes Bacterianos/genética , Havaí , História Antiga , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Silicatos/metabolismo , Microbiologia da Água
6.
Appl Environ Microbiol ; 77(8): 2763-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21335390

RESUMO

The genus of Marinobacter is one of the most ubiquitous in the global oceans and assumed to significantly impact various biogeochemical cycles. The genome structure and content of Marinobacter aquaeolei VT8 was analyzed and compared with those from other organisms with diverse adaptive strategies. Here, we report the many "opportunitrophic" genetic characteristics and strategies that M. aquaeolei has adopted to promote survival under various environmental conditions. Genome analysis revealed its metabolic potential to utilize oxygen and nitrate as terminal electron acceptors, iron as an electron donor, and urea, phosphonate, and various hydrocarbons as alternative N, P, and C sources, respectively. Miscellaneous sensory and defense mechanisms, apparently acquired via horizontal gene transfer, are involved in the perception of environmental fluctuations and antibiotic, phage, toxin, and heavy metal resistance, enabling survival under adverse conditions, such as oil-polluted water. Multiple putative integrases, transposases, and plasmids appear to have introduced additional metabolic potential, such as phosphonate degradation. The genomic potential of M. aquaeolei and its similarity to other opportunitrophs are consistent with its cosmopolitan occurrence in diverse environments and highly variable lifestyles.


Assuntos
Genoma Bacteriano , Marinobacter/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Ferro/metabolismo , Marinobacter/química , Marinobacter/metabolismo , Nitrogênio/metabolismo , Organofosfonatos/metabolismo , Consumo de Oxigênio , Filogenia , Análise de Sequência de DNA , Transdução de Sinais , Ureia/metabolismo
7.
Appl Environ Microbiol ; 76(21): 7231-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817797

RESUMO

We introduce a near-real-time optical imaging method that works via the detection of the intrinsic fluorescence of life forms upon excitation by deep-UV (DUV) illumination. A DUV (<250-nm) source enables the detection of microbes in their native state on natural materials, avoiding background autofluorescence and without the need for fluorescent dyes or tags. We demonstrate that DUV-laser-induced native fluorescence can detect bacteria on opaque surfaces at spatial scales ranging from tens of centimeters to micrometers and from communities to single cells. Given exposure times of 100 µs and low excitation intensities, this technique enables rapid imaging of bacterial communities and cells without irreversible sample alteration or destruction. We also demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo'ihi Seamount), showing the use of DUV native fluorescence for in situ detection in the deep biosphere and other nutrient-limited environments.


Assuntos
Bactérias , Raios Ultravioleta , Bacillus , Bactérias/ultraestrutura , Microbiologia Ambiental , Fluorescência , Shewanella , Espectrometria de Fluorescência , Esporos Bacterianos
8.
Environ Microbiol ; 11(1): 86-98, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18783382

RESUMO

Young, basaltic ocean crust exposed near mid-ocean ridge spreading centers present a spatially extensive environment that may be exploited by epi- and endolithic microbes in the deep sea. Geochemical energy released during basalt alteration reactions can theoretically support chemosynthesis, contributing to a trophic base for the ocean crust biome. To examine associations between endolithic microorganisms and basalt alteration processes, we compare the phylogenetic diversity, abundance and community structure of bacteria existing in several young, seafloor lavas from the East Pacific Rise at approximately 9 degrees N that are variably affected by oxidative seawater alteration. The results of 16S rRNA gene analyses and real-time, quantitative polymerase chain reaction measurements show that the abundance of prokaryotic communities, dominated by the bacterial domain, positively correlates with the extent of rock alteration--the oldest, most altered basalt harbours the greatest microbial biomass. The bacterial community overlap, structure and species richness relative to alteration state is less explicit, but broadly corresponds to sample characteristics (type of alteration products and general alteration state). Phylogenetic analyses suggest that the basalt biome may contribute to the geochemical cycling of Fe, S, Mn, C and N in the deep sea.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Bactérias/genética , Carbono , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Ferro/metabolismo , Manganês/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oceano Pacífico , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Silicatos/química , Enxofre/metabolismo
9.
Environ Microbiol ; 11(7): 1728-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19508561

RESUMO

We present an interlaboratory comparison between full-length 16S rRNA gene sequence analysis and terminal restriction fragment length polymorphism (TRFLP) for microbial communities hosted on seafloor basaltic lavas, with the goal of evaluating how similarly these two different DNA-based methods used in two independent labs would estimate the microbial diversity of the same basalt samples. Two samples were selected for these analyses based on differences detected in the overall levels of microbial diversity between them. Richness estimators indicate that TRFLP analysis significantly underestimates the richness of the relatively high-diversity seafloor basalt microbial community: at least 50% of species from the high-diversity site are missed by TRFLP. However, both methods reveal similar dominant species from the samples, and they predict similar levels of relative diversity between the two samples. Importantly, these results suggest that DNA-extraction or PCR-related bias between the two laboratories is minimal. We conclude that TRFLP may be useful for relative comparisons of diversity between basalt samples, for identifying dominant species, and for estimating the richness and evenness of low-diversity, skewed populations of seafloor basalt microbial communities, but that TRFLP may miss a majority of species in relatively highly diverse samples.


Assuntos
Sedimentos Geológicos/microbiologia , Metagenoma , Metagenômica/métodos , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Silicatos , Biodiversidade , Polimorfismo Genético
10.
Biometals ; 22(4): 565-71, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19357970

RESUMO

Siderophores are low molecular weight, high-affinity iron(III) ligands, produced by bacteria to solubilize and promote iron uptake under low iron conditions. Two prominent structural features characterize the majority of the marine siderophores discovered so far: (1) a predominance of suites of amphiphilic siderophores composed of an iron(III)-binding headgroup that is appended by one or two of a series of fatty acids and (2) a prevalence of siderophores that contain alpha-hydroxycarboxylic acid moieties (e.g., beta-hydroxyaspartic acid or citric acid) which are photoreactive when coordinated to Fe(III). Variation of the fatty acid chain length affects the relative amphiphilicity within a suite of siderophores. Catecholate sulfonation is another structural variation that would affect the hydrophilicity of a siderophore. In addition to a review of the marine amphiphilic siderophores, we report the production of petrobactin disulfonate by Marinobacter aquaeolei VT8.


Assuntos
Benzamidas/química , Marinobacter/metabolismo , Sideróforos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
11.
Appl Environ Microbiol ; 74(4): 1157-66, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083852

RESUMO

Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13C-enriched C4 grass Spartina alterniflora and 13C-depleted petroleum to monitor changes in the 13C content of biomass. Magnetic bead capture methods for selective recovery of bacterial RNA were used to monitor the 13C content of bacterial biomass during a 2-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass was derived from consumption of the freshly spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of Gamma- and Deltaproteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in situ. Although employed here at the domain level, RNA capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the 13C content of biomarker lipids.


Assuntos
Bactérias/metabolismo , Radioisótopos de Carbono/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , RNA Ribossômico/química , Áreas Alagadas , Bactérias/genética , Sequência de Bases , Monitoramento Ambiental/estatística & dados numéricos , Recuperação e Remediação Ambiental/métodos , Funções Verossimilhança , Massachusetts , Modelos Genéticos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Front Microbiol ; 8: 1434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824568

RESUMO

Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities. This area experiences rapid sedimentation, with an underlying basaltic crust that hosts a dynamic flux of hydrothermal fluids that diffuse into the sediment. Chloroflexi sequences dominated tag libraries in all sediment samples, with variation in the abundance of other bacterial groups (e.g., Actinobacteria, Aerophobetes, Atribacteria, Planctomycetes, and Nitrospirae). These variations occur in relation to the type of sediment (clays versus carbonate-rich) and the depth of sample origin, and show no clear connection to the distance from the discharge outcrop or to basement fluid microbial communities. Actinobacteria-related sequences dominated the basalt libraries, but these should be viewed cautiously due to possibilities for imprinting from contamination. Our results indicate that proximity to basement or areas of seawater recharge is not a primary driver of microbial community composition in basal sediment, even though fluids diffusing from basement into sediment may stimulate microbial activity.

13.
Trends Microbiol ; 13(9): 449-56, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16054363

RESUMO

Oceanography is inherently interdisciplinary and, since its inception, has included the study of microbe-mineral interactions. From early studies of manganese nodules, to the discovery of hydrothermal vents, it has been recognized that microorganisms are involved at various levels in the transformation of rocks and minerals at and below the seafloor. Recent studies include mineral weathering at low temperatures and microbe-mineral interactions in the subseafloor "deep biosphere". A common characteristic of seafloor and subseafloor geomicrobiological processes that distinguishes them from terrestrial or near-surface processes is that they occur in the dark, one or more steps removed from the sunlight that fuels the near-surface biosphere on Earth. This review focuses on geomicrobiological studies and energy flow in dark, deep-ocean and subseafloor rock habitats.


Assuntos
Bactérias/metabolismo , Ecossistema , Microbiologia Ambiental , Sedimentos Geológicos/microbiologia , Minerais/metabolismo , Meio Ambiente , Fenômenos Geológicos , Geologia , Oceanografia , Água do Mar/microbiologia
14.
Front Microbiol ; 7: 633, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199959

RESUMO

Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe(3+)/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement.

15.
Front Microbiol ; 7: 648, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242685

RESUMO

Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (µXAS) and X-ray diffraction (µXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.

16.
Front Microbiol ; 7: 396, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064928

RESUMO

To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen.

17.
Front Microbiol ; 7: 1679, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826293

RESUMO

High iron and eutrophic conditions are reported as environmental factors leading to accelerated low-water corrosion, an enhanced form of near-shore microbial induced corrosion. To explore this hypothesis, we deployed flow-through colonization systems in laboratory-based aquarium tanks under a continuous flow of surface seawater from Santa Catalina Island, CA, USA, for periods of 2 and 6 months. Substrates consisted of mild steel - a major constituent of maritime infrastructure - and the naturally occurring iron sulfide mineral pyrite. Four conditions were tested: free-venting "high-flux" conditions; a "stagnant" condition; an "active" flow-through condition with seawater slowly pumped over the substrates; and an "enrichment" condition where the slow pumping of seawater was supplemented with nutrient rich medium. Electron microscopy analyses of the 2-month high flux incubations document coating of substrates with "twisted stalks," resembling iron oxyhydroxide bioprecipitates made by marine neutrophilic Fe-oxidizing bacteria (FeOB). Six-month incubations exhibit increased biofilm and substrate corrosion in the active flow and nutrient enriched conditions relative to the stagnant condition. A scarcity of twisted stalks was observed for all 6 month slow-flow conditions compared to the high-flux condition, which may be attributable to oxygen concentrations in the slow-flux conditions being prohibitively low for sustained growth of stalk-producing bacteria. All substrates developed microbial communities reflective of the original seawater input, as based on 16S rRNA gene sequencing. Deltaproteobacteria sequences increased in relative abundance in the active flow and nutrient enrichment conditions, whereas Gammaproteobacteria sequences were relatively more abundant in the stagnant condition. These results indicate that (i) high-flux incubations with higher oxygen availability favor the development of biofilms with twisted stalks resembling those of marine neutrophilic FeOB and (ii) long-term nutrient stimulation results in substrate corrosion and biofilms with different bacterial community composition and structure relative to stagnant and non-nutritionally enhanced incubations. Similar microbial succession scenarios, involving increases in nutritional input leading to the proliferation of anaerobic iron and sulfur-cycling guilds, may occur at the nearby Port of Los Angeles and cause potential damage to maritime port infrastructure.

18.
Front Microbiol ; 6: 1409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733957

RESUMO

The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lo'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lo'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

19.
Front Microbiol ; 6: 1470, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779122

RESUMO

Areas of exposed basalt along mid-ocean ridges and at seafloor outcrops serve as conduits of fluid flux into and out of a subsurface ocean, and microbe-mineral interactions can influence alteration reactions at the rock-water interface. Located on the eastern flank of the East Pacific Rise, Dorado Outcrop is a site of low-temperature (<20°C) hydrothermal venting and represents a new end-member in the current survey of seafloor basalt biomes. Consistent with prior studies, a survey of 16S rRNA gene sequence diversity using universal primers targeting the V4 hypervariable region revealed much greater richness and diversity on the seafloor rocks than in surrounding seawater. Overall, Gamma-, Alpha-, and Deltaproteobacteria, and Thaumarchaeota dominated the sequenced communities, together making up over half of the observed diversity, though bacterial sequences were more abundant than archaeal in all samples. The most abundant bacterial reads were closely related to the obligate chemolithoautotrophic, sulfur-oxidizing Thioprofundum lithotrophicum, suggesting carbon and sulfur cycling as dominant metabolic pathways in this system. Representatives of Thaumarchaeota were detected in relatively high abundance on the basalts in comparison to bottom water, possibly indicating ammonia oxidation. In comparison to other sequence datasets from globally distributed seafloor basalts, this study reveals many overlapping and cosmopolitan phylogenetic groups and also suggests that substrate age correlates with community structure.

20.
Front Microbiol ; 6: 1260, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617595

RESUMO

The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA