Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; 23(1): 85, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34162405

RESUMO

BACKGROUND: Vascular calcification is an independent predictor of cardiovascular disease in patients with chronic kidney disease. Computed tomography (CT) is the gold-standard for detecting vascular calcification. Radial volumetric-interpolated breath-hold examination (radial-VIBE), a free-breathing gradient-echo cardiovascular magnetic resonance (CMR) sequence, has advantages over CT as it is ionising radiation-free. However, its capability in detecting thoracic aortic calcification (TAC) has not been investigated. This study aims to compare radial-VIBE to CT for the detection of TAC in the descending aorta of patients with end-stage renal disease (ESRD) using semi-automated methods, and to investigate the association between TAC and coronary artery calcification (CAC). METHODS: Paired cardiac CT and radial-VIBE CMR scans from ESRD patients participating in 2 prospective studies were obtained. Calcification volume was quantified using semi-automated methods in a 9 cm segment of the thoracic aorta. Correlation and agreement between TAC volume measured on CMR and CT were assessed with Spearman's correlation coefficient (ρ), linear regression, Bland-Altman plots and intraclass correlation coefficient (ICC). Association between CAC Agatston score and TAC volume determined by CT and CMR was measured with Spearman's correlation coefficient. RESULTS: Scans from 96 participants were analysed. Positive correlation was found between CMR and CT calcification volume [ρ = 0.61, 95% confidence interval (CI) 0.45-0.73]. ICC for consistency was 0.537 (95% CI 0.378-0.665). Bland-Altman plot revealed that compared to CT, CMR volumes were systematically higher at low calcification volume, and lower at high calcification volume. CT did not detect calcification in 41.7% of participants, while radial-VIBE CMR detected signal which the semi-quantitative algorithm reported as calcification in all of those individuals. Instances of suboptimal radial-VIBE CMR image quality were deemed to be the major contributors to the discrepancy. Correlations between CAC Agatston score and TAC volume measured by CT and CMR were ρ = 0.404 (95% CI 0.214-0.565) and ρ = 0.211 (95% CI 0.008-0.396), respectively. CONCLUSION: Radial-VIBE CMR can detect TAC with strong positive association to CT, albeit with the presence of proportional bias. Quantification of vascular calcification by radial-VIBE remains a promising area for future research, but improvements in image quality are necessary.


Assuntos
Doença da Artéria Coronariana , Falência Renal Crônica , Aorta Torácica/diagnóstico por imagem , Humanos , Falência Renal Crônica/complicações , Falência Renal Crônica/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Estudos Prospectivos
2.
J Cardiovasc Magn Reson ; 23(1): 125, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758850

RESUMO

BACKGROUND: Mapping of left ventricular (LV) native T1 is a promising non-invasive, non-contrast imaging biomarker. Native myocardial T1 times are prolonged in patients requiring dialysis, but there are concerns that the dialysis process and fluctuating fluid status may confound results in this population. We aimed to assess the changes in cardiac parameters on 3T cardiovascular magnetic resonance (CMR) before and after haemodialysis, with a specific focus on native T1 mapping. METHODS: This is a single centre, prospective observational study in which maintenance haemodialysis patients underwent CMR before and after dialysis (both scans within 24 h). Weight measurement, bio-impedance body composition monitoring, haemodialysis details and fluid intake were recorded. CMR protocol included cine imaging and mapping native T1 and T2. RESULTS: Twenty-six participants (16 male, 65 ± 9 years) were included in the analysis. The median net ultrafiltration volume on dialysis was 2.3 L (IQR 1.8, 2.5), resulting in a median weight reduction at post-dialysis scan of 1.35 kg (IQR 1.0, 1.9), with a median reduction in over-hydration (as measured by bioimpedance) of 0.75 L (IQR 0.5, 1.4). Significant reductions were observed in LV end-diastolic volume (- 25 ml, p = 0.002), LV stroke volume (- 13 ml, p = 0.007), global T1 (21 ms, p = 0.02), global T2 (- 1.2 ms, p = 0.02) following dialysis. There was no change in LV mass (p = 0.35), LV ejection fraction (p = 0.13) or global longitudinal strain (p = 0.22). On linear regression there was no association between baseline over-hydration (as defined by bioimpedance) and global native T1 or global T2, nor was there an association between the change in over-hydration and the change in these parameters. CONCLUSIONS: Acute changes in cardiac volumes and myocardial native T1 are detectable on 3T CMR following haemodialysis with fluid removal. The reduction in global T1 suggests that the abnormal native T1 observed in patients on haemodialysis is not entirely due to myocardial fibrosis.


Assuntos
Imagem Cinética por Ressonância Magnética , Miocárdio , Humanos , Imageamento por Ressonância Magnética , Masculino , Valor Preditivo dos Testes , Diálise Renal , Volume Sistólico , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA