Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(42): 42LT02, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30052202

RESUMO

Germanium-Tin (GeSn) alloys have attracted great amounts of attention as these group IV semiconductors present direct band-gap behavior with high Sn content and are compatible with current complementary metal oxide semiconductor technology. In this work, three dimensional tubular GeSn/Ge micro-resonators with a diameter of around 7.3 µm were demonstrated by rolling up GeSn nanomembranes (NM) grown on a Ge-on-insulator wafer via molecular beam epitaxy. The microstructural properties of the resonators were carefully investigated and the strain distributions of the rolled-up GeSn/Ge microcavities along the radial direction were studied by utilizing micro-Raman spectroscopy with different excitation laser wavelengths. The values of the strains calculated from Raman shifts agree well with the theoretical prediction. Coupled with fiber tapers, as-fabricated devices present a high quality factor of up to 800 in the transmission spectral measurements. The micro-resonators fabricated via rolled-up nanotechnology and GeSn/Ge NMs in this work may have great potential in photonic micro- and nanodevices.

2.
Nanoscale Res Lett ; 8(1): 79, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23413804

RESUMO

In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA