RESUMO
Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.
Assuntos
Sistema Nervoso Entérico , Optogenética , Tecnologia sem Fio , Animais , Optogenética/instrumentação , Sistema Nervoso Entérico/fisiologia , Camundongos , Tecnologia sem Fio/instrumentação , Eixo Encéfalo-Intestino/fisiologia , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Encéfalo/fisiologia , Camundongos Endogâmicos C57BLRESUMO
Synthesizing perceivable artificial neural inputs independent of typical sensory channels remains a fundamental challenge in the development of next-generation brain-machine interfaces. Establishing a minimally invasive, wirelessly effective, and miniaturized platform with long-term stability is crucial for creating a clinically meaningful interface capable of mediating artificial perceptual feedback. In this study, we demonstrate a miniaturized fully implantable wireless transcranial optogenetic encoder designed to generate artificial perceptions through digitized optogenetic manipulation of large cortical ensembles. This platform enables the spatiotemporal orchestration of large-scale cortical activity for remote perception genesis via real-time wireless communication and control, with optimized device performance achieved by simulation-guided methods addressing light and heat propagation during operation. Cue discrimination during operant learning demonstrates the wireless genesis of artificial percepts sensed by mice, where spatial distance across large cortical networks and sequential order-based analyses of discrimination performance reveal principles that adhere to general perceptual rules. These conceptual and technical advancements expand our understanding of artificial neural syntax and its perception by the brain, guiding the evolution of next-generation brain-machine communication.
RESUMO
Bioengineering approaches that combine living cellular components with three-dimensional scaffolds to generate motion can be used to develop a new generation of miniature robots. Integrating on-board electronics and remote control in these biological machines will enable various applications across engineering, biology, and medicine. Here, we present hybrid bioelectronic robots equipped with battery-free and microinorganic light-emitting diodes for wireless control and real-time communication. Centimeter-scale walking robots were computationally designed and optimized to host on-board optoelectronics with independent stimulation of multiple optogenetic skeletal muscles, achieving remote command of walking, turning, plowing, and transport functions both at individual and collective levels. This work paves the way toward a class of biohybrid machines able to combine biological actuation and sensing with on-board computing.
Assuntos
Robótica , Robótica/métodos , Músculo Esquelético/fisiologia , Eletrônica , CaminhadaRESUMO
Wireless battery-free optogenetic devices enable behavioral neuroscience studies in groups of animals with minimal interference to natural behavior. Real-time independent control of optogenetic stimulation through near-field communication dramatically expands the realm of applications of these devices in broad contexts of neuroscience research. Dissemination of these tools with advanced functionalities to the neuroscience community requires protocols for device manufacturing and experimental implementation. This protocol describes detailed procedures for fabrication, encapsulation and implantation of recently developed advanced wireless devices in head- and back-mounted forms. In addition, procedures for standard implementation of experimental systems in mice are provided. This protocol aims to facilitate the application of wireless optogenetic devices in advanced optogenetic experiments involving groups of freely moving rodents and complex environmental designs. The entire protocol lasts ~3-5 weeks.