Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(5): 804-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191935

RESUMO

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Assuntos
Neuroimagem , Software , Neuroimagem/métodos , Humanos , Interface Usuário-Computador , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
2.
Mol Psychiatry ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862674

RESUMO

Visual alterations under classic psychedelics can include rich phenomenological accounts of eyes-closed imagery. Preclinical evidence suggests agonism of the 5-HT2A receptor may reduce synaptic gain to produce psychedelic-induced imagery. However, this has not been investigated in humans. To infer the directed connectivity changes to visual connectivity underlying psychedelic visual imagery in healthy adults, a double-blind, randomised, placebo-controlled, cross-over study was performed, and dynamic causal modelling was applied to the resting state eyes-closed functional MRI scans of 24 subjects after administration of 0.2 mg/kg of the serotonergic psychedelic drug, psilocybin (magic mushrooms), or placebo. The effective connectivity model included the early visual area, fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus. We observed a pattern of increased self-inhibition of both early visual and higher visual-association regions under psilocybin that was consistent with preclinical findings. We also observed a pattern of reduced inhibition from visual-association regions to earlier visual areas that indicated top-down connectivity is enhanced during visual imagery. The results were analysed with behavioural measures taken immediately after the scans, suggesting psilocybin-induced decreased sensitivity to neural inputs is associated with the perception of eyes-closed visual imagery. The findings inform our basic and clinical understanding of visual perception. They reveal neural mechanisms that, by affecting balance, may increase the impact of top-down feedback connectivity on perception, which could contribute to the visual imagery seen with eyes-closed during psychedelic experiences.

3.
Pharmacol Rev ; 74(4): 876-917, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786290

RESUMO

Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Solubilidade , Encéfalo , Estado de Consciência , Ego
4.
Mov Disord ; 39(2): 370-379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927246

RESUMO

BACKGROUND: The neurological phenotype of Friedreich ataxia (FRDA) is characterized by neurodegeneration and neuroinflammation in the cerebellum and brainstem. Novel neuroimaging approaches quantifying brain free-water using diffusion magnetic resonance imaging (dMRI) are potentially more sensitive to these processes than standard imaging markers. OBJECTIVES: To quantify the extent of free-water and microstructural change in FRDA-relevant brain regions using neurite orientation dispersion and density imaging (NODDI), and bitensor diffusion tensor imaging (btDTI). METHOD: Multi-shell dMRI was acquired from 14 individuals with FRDA and 14 controls. Free-water measures from NODDI (FISO) and btDTI (FW) were compared between groups in the cerebellar cortex, dentate nuclei, cerebellar peduncles, and brainstem. The relative sensitivity of the free-water measures to group differences was compared to microstructural measures of NODDI intracellular volume, free-water corrected fractional anisotropy, and conventional uncorrected fractional anisotropy. RESULTS: In individuals with FRDA, FW was elevated in the cerebellar cortex, peduncles (excluding middle), dentate, and brainstem (P < 0.005). FISO was elevated primarily in the cerebellar lobules (P < 0.001). On average, FW effect sizes were larger than all other markers (mean ηρ 2 = 0.43), although microstructural measures also had very large effects in the superior and inferior cerebellar peduncles and brainstem (ηρ 2 > 0.37). Across all regions and metrics, effect sizes were largest in the superior cerebellar peduncles (ηρ 2 > 0.46). CONCLUSIONS: Multi-compartment diffusion measures of free-water and neurite integrity distinguish FRDA from controls with large effects. Free-water magnitude in the brainstem and cerebellum provided the greatest distinction between groups. This study supports further applications of multi-compartment diffusion modeling, and investigations of free-water as a measure of disease expression and progression in FRDA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Substância Branca , Humanos , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/patologia , Imagem de Tensor de Difusão/métodos , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtornos dos Movimentos/patologia , Substância Branca/diagnóstico por imagem , Água , Imageamento por Ressonância Magnética
5.
Mov Disord ; 39(7): 1109-1118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644761

RESUMO

BACKGROUND: The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS: Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS: Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS: Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Núcleos Cerebelares , Ataxia de Friedreich , Imageamento por Ressonância Magnética , Humanos , Ataxia de Friedreich/patologia , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/patologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Atrofia/patologia
6.
Cereb Cortex ; 33(4): 1476-1488, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441214

RESUMO

A major challenge in current cognitive neuroscience is how functional brain connectivity gives rise to human cognition. Functional magnetic resonance imaging (fMRI) describes brain connectivity based on cerebral oxygenation dynamics (hemodynamic connectivity), whereas [18F]-fluorodeoxyglucose functional positron emission tomography (FDG-fPET) describes brain connectivity based on cerebral glucose uptake (metabolic connectivity), each providing a unique characterization of the human brain. How these 2 modalities differ in their contribution to cognition and behavior is unclear. We used simultaneous resting-state FDG-fPET/fMRI to investigate how hemodynamic connectivity and metabolic connectivity relate to cognitive function by applying partial least squares analyses. Results revealed that although for both modalities the frontoparietal anatomical subdivisions related the strongest to cognition, using hemodynamic measures this network expressed executive functioning, episodic memory, and depression, whereas for metabolic measures this network exclusively expressed executive functioning. These findings demonstrate the unique advantages that simultaneous FDG-PET/fMRI has to provide a comprehensive understanding of the neural mechanisms that underpin cognition and highlights the importance of multimodality imaging in cognitive neuroscience research.


Assuntos
Conectoma , Humanos , Fluordesoxiglucose F18/metabolismo , Encéfalo , Cognição , Imagem Multimodal , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38858799

RESUMO

OBJECTIVE: Extracellular volume fraction (fECV) and liver and spleen size have been correlated with liver fibrosis stages and cirrhosis. The purpose of the current study was to determine the predictive value of fECV alone and in conjunction with measurement of liver and spleen size for severity of liver fibrosis. METHODS: This was a retrospective study of 95 subjects (65 with liver biopsy and 30 controls). Spearman rank correlation coefficient was used to assess correlation between radiological markers and fibrosis stage. Receiver operating characteristic analysis was performed to assess the discriminative ability of radiological markers for significant (F2+) and advanced (F3+) fibrosis and cirrhosis (F4), by reporting the area under the curve (AUC). RESULTS: The cohort had a mean age of 51.4 ± 14.4 years, and 52 were female (55%). There were 36, 5, 6, 9, and 39 in fibrosis stages F0, F1, F2, F3, and F4, respectively. Spleen volume alone showed the highest correlation (r = 0.552, P < 0.001) and AUCs of 0.823, 0.807, and 0.785 for identification of significant and advanced fibrosis and cirrhosis, respectively. Adding fECV to spleen length improved AUCs (0.764, 0.745, and 0.717 to 0.812, 0.781, and 0.738, respectively) compared with splenic length alone. However, adding fECV to spleen volume did not improve the AUCs for significant or advanced fibrosis or cirrhosis. CONCLUSIONS: Spleen size (measured in length or volume) showed better correlation with liver fibrosis stages compared with fECV. The combination of fECV and spleen length had higher accuracy compared with fECV alone or spleen length alone.

8.
Hum Brain Mapp ; 44(3): 1251-1277, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36269148

RESUMO

This review provides a qualitative and quantitative analysis of cerebral glucose metabolism in ageing. We undertook a systematic literature review followed by pooled effect size and activation likelihood estimates (ALE) meta-analyses. Studies were retrieved from PubMed following the PRISMA guidelines. After reviewing 635 records, 21 studies with 22 independent samples (n = 911 participants) were included in the pooled effect size analyses. Eight studies with eleven separate samples (n = 713 participants) were included in the ALE analyses. Pooled effect sizes showed significantly lower cerebral metabolic rates of glucose for older versus younger adults for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes. Among the sub-cortical structures, the caudate showed a lower metabolic rate among older adults. In sub-group analyses controlling for changes in brain volume or partial volume effects, the lower glucose metabolism among older adults in the frontal lobe remained significant, whereas confidence intervals crossed zero for the other lobes and structures. The ALE identified nine clusters of lower glucose metabolism among older adults, ranging from 200 to 2640 mm3 . The two largest clusters were in the left and right inferior frontal and superior temporal gyri and the insula. Clusters were also found in the inferior temporal junction, the anterior cingulate and caudate. Taken together, the results are consistent with research showing less efficient glucose metabolism in the ageing brain. The findings are discussed in the context of theories of cognitive ageing and are compared to those found in neurodegenerative disease.


Assuntos
Glucose , Doenças Neurodegenerativas , Idoso , Humanos , Envelhecimento , Encéfalo/fisiologia , Glucose/metabolismo , Funções Verossimilhança
9.
Clin Endocrinol (Oxf) ; 98(5): 692-699, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807922

RESUMO

OBJECTIVE: The role of circulating sex hormones on structural brain ageing is yet to be established. This study explored whether concentrations of circulating sex hormones in older women are associated with the baseline and longitudinal changes in structural brain ageing, defined by the brain-predicted age difference (brain-PAD). DESIGN: Prospective cohort study using data from NEURO and Sex Hormones in Older Women; substudies of the ASPirin in Reducing Events in the Elderly clinical trial. PATIENTS: Community-dwelling older women (aged 70+ years). MEASUREMENTS: Oestrone, testosterone, dehydroepiandrosterone (DHEA), and sex-hormone binding globulin (SHBG) were quantified from plasma samples collected at baseline. T1-weighted magnetic resonance imaging was performed at baseline, 1 and 3 years. Brain age was derived from whole brain volume using a validated algorithm. RESULTS: The sample comprised of 207 women not taking medications known to influence sex hormone concentrations. A statistically higher baseline brain-PAD (older brain age relative to chronological age) was seen for women in the highest DHEA tertile compared with the lowest in the unadjusted analysis (p = .04). This was not significant when adjusted for chronological age, and potential confounding health and behavioural factors. Oestrone, testosterone and SHBG were not associated with brain-PAD cross-sectionally, nor were any of the examined sex hormones or SHBG associated with brain-PAD longitudinally. CONCLUSION: No strong evidence of an association between circulating sex hormones and brain-PAD. Given there is prior evidence to suggests sex hormones may be important for brain ageing, further studies of circulating sex hormones and brain health in postmenopausal women are warranted.


Assuntos
Estradiol , Estrona , Idoso , Humanos , Feminino , Estudos Prospectivos , Pós-Menopausa , Hormônios Esteroides Gonadais , Testosterona , Encéfalo/metabolismo , Desidroepiandrosterona , Globulina de Ligação a Hormônio Sexual/metabolismo
10.
Mov Disord ; 38(1): 45-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308733

RESUMO

BACKGROUND: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS: We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Humanos , Ataxia de Friedreich/complicações , Ataxia de Friedreich/patologia , Ataxia , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais
11.
Psychophysiology ; 60(1): e14159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36106762

RESUMO

The literature on large-scale resting-state functional brain networks across the adult lifespan was systematically reviewed. Studies published between 1986 and July 2021 were retrieved from PubMed. After reviewing 2938 records, 144 studies were included. Results on 11 network measures were summarized and assessed for certainty of the evidence using a modified GRADE method. The evidence provides high certainty that older adults display reduced within-network and increased between-network functional connectivity. Older adults also show lower segregation, modularity, efficiency and hub function, and decreased lateralization and a posterior to anterior shift at rest. Higher-order functional networks reliably showed age differences, whereas primary sensory and motor networks showed more variable results. The inflection point for network changes is often the third or fourth decade of life. Age effects were found with moderate certainty for within- and between-network altered patterns and speed of dynamic connectivity. Research on within-subject bold variability and connectivity using glucose uptake provides low certainty of age differences but warrants further study. Taken together, these age-related changes may contribute to the cognitive decline often seen in older adults.


Assuntos
Encéfalo , Disfunção Cognitiva , Humanos , Idoso , Vias Neurais , Encéfalo/diagnóstico por imagem , Envelhecimento/psicologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
12.
Proc Natl Acad Sci U S A ; 117(24): 13750-13756, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482871

RESUMO

In response to dehydration, humans experience thirst. This subjective state is fundamental to survival as it motivates drinking, which subsequently corrects the fluid deficit. To elicit thirst, previous studies have manipulated blood chemistry to produce a physiological thirst stimulus. In the present study, we investigated whether a physiological stimulus is indeed required for thirst to be experienced. Functional MRI (fMRI) was used to scan fully hydrated participants while they imagined a state of intense thirst and while they imagined drinking to satiate thirst. Subjective ratings of thirst were significantly higher for imagining thirst compared with imagining drinking or baseline, revealing a successful dissociation of thirst from underlying physiology. The imagine thirst condition activated brain regions similar to those reported in previous studies of physiologically evoked thirst, including the anterior midcingulate cortex (aMCC), anterior insula, precentral gyrus, inferior frontal gyrus, middle frontal gyrus, and operculum, indicating a similar neural network underlies both imagined thirst and physiologically evoked thirst. Analogous brain regions were also activated during imagined drinking, suggesting the neural representation of thirst contains a drinking-related component. Finally, the aMCC showed an increase in functional connectivity with the insula during imagined thirst relative to imagined drinking, implying functional connectivity between these two regions is needed before thirst can be experienced. As a result of these findings, this study provides important insight into how the neural representation of subjective thirst is generated and how it subsequently motivates drinking behavior.


Assuntos
Encéfalo/fisiologia , Sede , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imaginação , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Água/metabolismo
13.
J Digit Imaging ; 36(1): 204-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323914

RESUMO

Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast for clinical diagnoses and research which underpin many recent breakthroughs in medicine and biology. The post-processing of reconstructed MR images is often automated for incorporation into MRI scanners by the manufacturers and increasingly plays a critical role in the final image quality for clinical reporting and interpretation. For image enhancement and correction, the post-processing steps include noise reduction, image artefact correction, and image resolution improvements. With the recent success of deep learning in many research fields, there is great potential to apply deep learning for MR image enhancement, and recent publications have demonstrated promising results. Motivated by the rapidly growing literature in this area, in this review paper, we provide a comprehensive overview of deep learning-based methods for post-processing MR images to enhance image quality and correct image artefacts. We aim to provide researchers in MRI or other research fields, including computer vision and image processing, a literature survey of deep learning approaches for MR image enhancement. We discuss the current limitations of the application of artificial intelligence in MRI and highlight possible directions for future developments. In the era of deep learning, we highlight the importance of a critical appraisal of the explanatory information provided and the generalizability of deep learning algorithms in medical imaging.


Assuntos
Aprendizado Profundo , Humanos , Inteligência Artificial , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Aumento da Imagem
14.
Hum Brain Mapp ; 43(1): 15-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612558

RESUMO

This Special Issue of Human Brain Mapping is dedicated to a 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. It reports updates from a broad range of international neuroimaging projects that pool data from around the world to answer fundamental questions in neuroscience. Since ENIGMA was formed in December 2009, the initiative grew into a worldwide effort with over 2,000 participating scientists from 45 countries, and over 50 working groups leading large-scale studies of human brain disorders. Over the last decade, many lessons were learned on how best to pool brain data from diverse sources. Working groups were created to develop methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance spectroscopy (MRS). The quest to understand genetic effects on human brain development and disease also led to analyses of brain scans on an unprecedented scale. Genetic roadmaps of the human cortex were created by researchers worldwide who collaborated to perform statistically well-powered analyses of common and rare genetic variants on brain measures and rates of brain development and aging. Here, we summarize the 31 papers in this Special Issue, covering: (a) technical approaches to harmonize analysis of different types of brain imaging data, (b) reviews of the last decade of work by several of ENIGMA's clinical and technical working groups, and (c) new empirical papers reporting large-scale international brain mapping analyses in patients with substance use disorders, schizophrenia, bipolar disorders, major depression, posttraumatic stress disorder, obsessive compulsive disorder, epilepsy, and stroke.


Assuntos
Genética , Metanálise como Assunto , Estudos Multicêntricos como Assunto , Neuroimagem , Mapeamento Encefálico , Humanos
15.
Ann Neurol ; 90(4): 570-583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34435700

RESUMO

OBJECTIVE: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. METHODS: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. RESULTS: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5-2.6). Cerebellar gray matter alterations were most pronounced in lobules I-VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax  = 0.35) and peduncles (rmax  = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax  = -0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. INTERPRETATION: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570-583.


Assuntos
Encéfalo/patologia , Ataxia de Friedreich/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Adulto , Idade de Início , Encéfalo/anatomia & histologia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/patologia , Adulto Jovem
16.
NMR Biomed ; 35(4): e4225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-31865624

RESUMO

The suppression of motion artefacts from MR images is a challenging task. The purpose of this paper was to develop a standalone novel technique to suppress motion artefacts in MR images using a data-driven deep learning approach. A simulation framework was developed to generate motion-corrupted images from motion-free images using randomly generated motion profiles. An Inception-ResNet deep learning network architecture was used as the encoder and was augmented with a stack of convolution and upsampling layers to form an encoder-decoder network. The network was trained on simulated motion-corrupted images to identify and suppress those artefacts attributable to motion. The network was validated on unseen simulated datasets and real-world experimental motion-corrupted in vivo brain datasets. The trained network was able to suppress the motion artefacts in the reconstructed images, and the mean structural similarity (SSIM) increased from 0.9058 to 0.9338. The network was also able to suppress the motion artefacts from the real-world experimental dataset, and the mean SSIM increased from 0.8671 to 0.9145. The motion correction of the experimental datasets demonstrated the effectiveness of the motion simulation generation process. The proposed method successfully removed motion artefacts and outperformed an iterative entropy minimization method in terms of the SSIM index and normalized root mean squared error, which were 5-10% better for the proposed method. In conclusion, a novel, data-driven motion correction technique has been developed that can suppress motion artefacts from motion-corrupted MR images. The proposed technique is a standalone, post-processing method that does not interfere with data acquisition or reconstruction parameters, thus making it suitable for routine clinical practice.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
17.
Eur J Nucl Med Mol Imaging ; 49(9): 3098-3118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35312031

RESUMO

Image processing plays a crucial role in maximising diagnostic quality of positron emission tomography (PET) images. Recently, deep learning methods developed across many fields have shown tremendous potential when applied to medical image enhancement, resulting in a rich and rapidly advancing literature surrounding this subject. This review encapsulates methods for integrating deep learning into PET image reconstruction and post-processing for low-dose imaging and resolution enhancement. A brief introduction to conventional image processing techniques in PET is firstly presented. We then review methods which integrate deep learning into the image reconstruction framework as either deep learning-based regularisation or as a fully data-driven mapping from measured signal to images. Deep learning-based post-processing methods for low-dose imaging, temporal resolution enhancement and spatial resolution enhancement are also reviewed. Finally, the challenges associated with applying deep learning to enhance PET images in the clinical setting are discussed and future research directions to address these challenges are presented.


Assuntos
Aprendizado Profundo , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos
18.
Mov Disord ; 37(1): 218-224, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643298

RESUMO

BACKGROUND: Neuroinflammation is proposed to accompany, or even contribute to, neuropathology in Friedreich ataxia (FRDA), with implications for disease treatment and tracking. OBJECTIVES: To examine brain glial activation and systemic immune dysfunction in people with FRDA and quantify their relationship with symptom severity, duration, and onset age. METHODS: Fifteen individuals with FRDA and 13 healthy controls underwent brain positron emission tomography using the translocator protein (TSPO) radioligand [18 F]-FEMPA, a marker of glial activation, together with the quantification of blood plasma inflammatory cytokines. RESULTS: [18 F]-FEMPA binding was significantly increased in the dentate nuclei (d = 0.67), superior cerebellar peduncles (d = 0.74), and midbrain (d = 0.87), alongside increased plasma interleukin-6 (IL-6) (d = 0.73), in individuals with FRDA compared to controls. Increased [18 F]-FEMPA binding in the dentate nuclei, brainstem, and cerebellar anterior lobe correlated with earlier age of symptom onset (controlling for the genetic triplet repeat expansion length; all r part < -0.6), and in the pons and anterior lobe with shorter disease duration (r = -0.66; -0.73). CONCLUSIONS: Neuroinflammation is evident in brain regions implicated in FRDA neuropathology. Increased neuroimmune activity may be related to earlier disease onset and attenuate over the course of the illness. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Tronco Encefálico/metabolismo , Cerebelo/patologia , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/patologia , Humanos , Imageamento por Ressonância Magnética , Doenças Neuroinflamatórias , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo
19.
J Magn Reson Imaging ; 55(5): 1283-1300, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33586315

RESUMO

Amyotrophic lateral sclerosis (ALS) results in progressive impairment of upper and lower motor neurons. Increasing evidence from both in vivo and ex vivo studies suggest that iron accumulation in the motor cortex is a neuropathological hallmark in ALS. An in vivo neuroimaging marker of iron dysregulation in ALS would be useful in disease diagnosis and prognosis. Magnetic resonance imaging (MRI), with its unique capability to generate a variety of soft tissue contrasts, provides opportunities to image iron distribution in the human brain with millimeter to sub-millimeter anatomical resolution. Conventionally, MRI T1-weighted, T2-weighted, and T2*-weighted images have been used to investigate iron dysregulation in the brain in vivo. Susceptibility weighted imaging has enhanced contrast for para-magnetic materials that provides superior sensitivity to iron in vivo. Recently, the development of quantitative susceptibility mapping (QSM) has realized the possibility of using quantitative assessments of magnetic susceptibility measures in brain tissues as a surrogate measurement of in vivo brain iron. In this review, we provide an overview of MRI techniques that have been used to investigate iron dysregulation in ALS in vivo. The potential uses, strengths, and limitations of these techniques in clinical trials, disease diagnosis, and prognosis are presented and discussed. We recommend further longitudinal studies with appropriate cohort characterization to validate the efficacy of these techniques. We conclude that quantitative iron assessment using recent advances in MRI including QSM holds great potential to be a sensitive diagnostic and prognostic marker in ALS. The use of multimodal neuroimaging markers in combination with iron imaging may also offer improved sensitivity in ALS diagnosis and prognosis that could make a major contribution to clinical care and treatment trials. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Humanos , Ferro , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Neurônios Motores/patologia
20.
Cereb Cortex ; 31(2): 1270-1283, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33067999

RESUMO

The maternal brain undergoes structural and functional plasticity during pregnancy and the postpartum period. Little is known about functional plasticity outside caregiving-specific contexts and whether changes persist across the lifespan. Structural neuroimaging studies suggest that parenthood may confer a protective effect against the aging process; however, it is unknown whether parenthood is associated with functional brain differences in late life. We examined the relationship between resting-state functional connectivity and number of children parented in 220 healthy older females (73.82 ± 3.53 years) and 252 healthy older males (73.95 ± 3.50 years). We compared the patterns of resting-state functional connectivity with 3 different models of age-related functional change to assess whether these effects may be functionally neuroprotective for the aging human parental brain. No relationship between functional connectivity and number of children was obtained for males. For females, we found widespread decreasing functional connectivity with increasing number of children parented, with increased segregation between networks, decreased connectivity between hemispheres, and decreased connectivity between anterior and posterior regions. The patterns of functional connectivity related to the number of children an older woman has parented were in the opposite direction to those usually associated with age-related cognitive decline, suggesting that motherhood may be beneficial for brain function in late life.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Comportamento Materno/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Idoso , Envelhecimento/fisiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Testes de Estado Mental e Demência , Mães , Neuroproteção/fisiologia , Pais , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA