Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 481(7379): 55-7, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22158105

RESUMO

When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

2.
Front Aging Neurosci ; 13: 585904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643019

RESUMO

Wearable devices for remote and continuous health monitoring in older populations frequently include sensors for body temperature measurements (i.e., skin and core body temperatures). Healthy aging is associated with core body temperatures that are in the lower range of age-related normal values (36.3 ± 0.6°C, oral temperature), while patients with Alzheimer's disease (AD) exhibit core body temperatures above normal values (up to 0.2°C). However, the relation of body temperature measures with neurocognitive health in older adults remains unknown. This study aimed to explore the association of body temperature with cognitive performance in older adults with and without mild cognitive impairment (MCI). Eighty community-dwelling older adults (≥65 years) participated, of which 54 participants were cognitively healthy and 26 participants met the criteria for MCI. Skin temperatures at the rib cage and the scapula were measured in the laboratory (single-point measurement) and neuropsychological tests were conducted to assess general cognitive performance, episodic memory, verbal fluency, executive function, and processing speed. In a subgroup (n = 15, nine healthy, six MCI), skin and core body temperatures were measured continuously during 12 h of habitual daily activities (long-term measurement). Spearman's partial correlation analyses, controlled for age, revealed that lower median body temperature and higher peak-to-peak body temperature amplitude was associated with better general cognitive performance and with better performance in specific domains of cognition; [e.g., rib median skin temperature (single-point) vs. processing speed: rs = 0.33, p = 0.002; rib median skin temperature (long-term) vs. executive function: rs = 0.56, p = 0.023; and peak-to-peak core body temperature amplitude (long-term) vs. episodic memory: rs = 0.51, p = 0.032]. Additionally, cognitively healthy older adults showed lower median body temperature and higher peak-to-peak body temperature amplitude compared to older adults with MCI (e.g., rib median skin temperature, single-point: p = 0.035, r = 0.20). We conclude that both skin and core body temperature measures are potential early biomarkers of cognitive decline and preclinical symptoms of MCI/AD. It may therefore be promising to integrate body temperature measures into multi-parameter systems for the remote and continuous monitoring of neurocognitive health in older adults.

3.
Front Aging Neurosci ; 12: 197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760267

RESUMO

Heart rate variability (HRV) mirrors autonomic nervous system activities and might serve as a parameter to monitor health status in older adults. However, it is currently unknown which functional health measures, including cognitive, physical, and gait performance parameters, are most strongly related to HRV indices. This knowledge would enable implementing HRV assessments into health monitoring routines and training planning for older adults. Simultaneous cognitive-motor and exergame training may be effective to improve HRV indices but has not been investigated yet. Eighty-nine healthy older adults (≥70 years of age) were randomized into three groups: (1) virtual reality video game dancing, i.e., exergaming (DANCE); (2) treadmill walking with simultaneous verbal memory training (MEMORY); or (3) treadmill walking only (PHYS). Strength and balance exercises complemented each program. Over 6 months, two weekly 1-h training sessions were performed. HRV indices (standard deviation of N-N intervals, SDNN; root mean square of successive R-R interval differences, RMSSD; and absolute power of high-frequency band (0.15-0.4 Hz), HF power) and various measures of cognitive, physical, and gait performance were assessed at baseline and after 3 months and 6 months. Multiple linear regression analyses with planned comparisons were calculated. At baseline, 8-12% of HRV variance was significantly explained by cognitive executive functions and leg strength (inversely related). Verbal long-term memory, aerobic and functional fitness, and gait performance did not contribute to the model (SDNN: R2 = 0.082, p = 0.016; RMSSD: R2 = 0.121, p = 0.013; HF power: R2 = 0.119, p = 0.015). After 6 months, DANCE improved HRV indices, while MEMORY and PHYS did not (time × intervention interactions: first-contrast DANCE/MEMORY vs. PHYS: SDNN p = 0.014 one-tailed, ΔR 2 = 0.020 and RMSSD p = 0.052 one-tailed (trend), ΔR 2 = 0.007; second-contrast DANCE vs. MEMORY: SDNN p = 0.002 one-tailed, ΔR 2 = 0.035, RMSSD p = 0.017 one-tailed, ΔR 2 = 0.012, and HF power p = 0.011 one-tailed, ΔR 2 = 0.013). We conclude that mainly cognitive executive functions are associated with HRV indices and that exergame training improves global and parasympathetic autonomic nervous system activities in older adults. Periodic assessments of HRV in older citizens could be particularly beneficial to monitor cognitive health and provide indications for preventative exercise measures.

4.
Front Physiol ; 9: 1780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618795

RESUMO

Non-invasive, multi-parameter methods to estimate core body temperature offer several advantages for monitoring thermal strain, although further work is required to identify the most relevant predictor measures. This study aimed to compare the validity of an existing and two novel multi-parameter rectal temperature prediction models. Thirteen healthy male participants (age 30.9 ± 5.4 years) performed two experimental sessions. The experimental procedure comprised 15 min baseline seated rest (23.2 ± 0.3°C, 24.5 ± 1.6% relative humidity), followed by 15 min seated rest and cycling in a climatic chamber (35.4 ± 0.2°C, 56.5 ± 3.9% relative humidity; to +1.5°C or maximally 38.5°C rectal temperature, duration 20-60 min), with a final 30 min seated rest outside the chamber. In session 1, participants exercised at 75% of their heart rate maximum (HR max) and wore light athletic clothing (t-shirt and shorts), while in session 2, participants exercised at 50% HR max, wearing protective firefighter clothing (jacket and trousers). The first new prediction model, comprising the input of 18 non-invasive measures, i.e., insulated and non-insulated skin temperature, heat flux, and heart rate ("Max-Input Model", standard error of the estimate [SEE] = 0.28°C, R2 = 0.70), did not exceed the predictive power of a previously reported model which included six measures and no insulated skin temperatures (SEE = 0.28°C, R2 = 0.71). Moreover, a second new prediction model that contained only the two most relevant parameters (heart rate and insulated skin temperature at the scapula) performed similarly ("Min-Input Model", SEE = 0.29, R2 = 0.68). In conclusion, the "Min-Input Model" provided comparable validity and superior practicality (only two measurement parameters) for estimating rectal temperature versus two other models requiring six or more input measures.

5.
PLoS One ; 12(7): e0182180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759587

RESUMO

Slow walking speed is strongly associated with adverse health outcomes, including cognitive impairment, in the older population. Moreover, adequate walking speed is crucial to maintain older pedestrians' mobility and safety in urban areas. This study aimed to identify the proportion of Swiss older adults that didn't reach 1.2 m/s, which reflects the requirements to cross streets within the green-yellow phase of pedestrian lights, when walking fast under cognitive challenge. A convenience sample, including 120 older women (65%) and men, was recruited from the community (88%) and from senior residences and divided into groups of 70-79 years (n = 59, 74.8 ± 0.4 y; mean ± SD) and ≥80 years (n = 61, 85.5 ± 0.5 y). Steady state walking speed was assessed under single- and dual-task conditions at preferred and fast walking speed. Additionally, functional lower extremity strength (5-chair-rises test), subjective health rating, and retrospective estimates of fall frequency were recorded. Results showed that 35.6% of the younger and 73.8% of the older participants were not able to walk faster than 1.2 m/s under the fast dual-task walking condition. Fast dual-task walking speed was higher compared to the preferred speed single- and dual-task conditions (all p < .05, r = .31 to .48). Average preferred single-task walking speed was 1.19 ± 0.24 m/s (70-79 y) and 0.94 ± 0.27 m/s (≥80 y), respectively, and correlated with performance in the 5-chair-rises test (rs = -.49, p < .001), subjective health (τ = .27, p < .001), and fall frequency (τ = -.23, p = .002). We conclude that the fitness status of many older people is inadequate to safely cross streets at pedestrian lights and maintain mobility in the community's daily life in urban areas. Consequently, training measures to improve the older population's cognitive and physical fitness should be promoted to enhance walking speed and safety of older pedestrians.


Assuntos
Envelhecimento/fisiologia , Pedestres , Desempenho Psicomotor , Caminhada/fisiologia , Aceleração , Acidentes de Trânsito/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Veículos Automotores
6.
Front Aging Neurosci ; 8: 66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148041

RESUMO

Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25-0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F (1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31-0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.

7.
Clin Interv Aging ; 10: 1711-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26604719

RESUMO

BACKGROUND: About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. METHODS: Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. RESULTS: Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (-77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). CONCLUSION: Long-term multicomponent cognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.


Assuntos
Acidentes por Quedas/prevenção & controle , Cognição , Terapia por Exercício/métodos , Marcha , Idoso , Idoso de 80 Anos ou mais , Dança , Exercício Físico , Feminino , Humanos , Masculino , Equilíbrio Postural , Jogos de Vídeo , Caminhada
8.
Clin Interv Aging ; 10: 1335-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26316729

RESUMO

BACKGROUND: Cognitive impairment is a health problem that concerns almost every second elderly person. Physical and cognitive training have differential positive effects on cognition, but have been rarely applied in combination. This study evaluates synergistic effects of multicomponent physical exercise complemented with novel simultaneous cognitive training on cognition in older adults. We hypothesized that simultaneous cognitive-physical components would add training specific cognitive benefits compared to exclusively physical training. METHODS: Seniors, older than 70 years, without cognitive impairment, were randomly assigned to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated. RESULTS: Eighty-nine participants were randomized to the three groups initially, 71 completed the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous cognitive-physical programs were found in two dimensions of executive function. "Shifting attention" showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS (F[2, 68] =1.95, trend P=0.075, r=0.17); and "working memory" showed a time×intervention interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R (2)=0.006). Performance improvements in executive functions, long-term visual memory (episodic memory), and processing speed were maintained at follow-up in all groups. CONCLUSION: Particular executive functions benefit from simultaneous cognitive-physical training compared to exclusively physical multicomponent training. Cognitive-physical training programs may counteract widespread cognitive impairments in the elderly.


Assuntos
Cognição/fisiologia , Função Executiva/fisiologia , Terapia por Exercício/métodos , Terapia por Exercício/psicologia , Jogos de Vídeo , Idoso , Idoso de 80 Anos ou mais , Dança/fisiologia , Dança/psicologia , Feminino , Seguimentos , Humanos , Aprendizagem/fisiologia , Masculino , Testes Neuropsicológicos , Equilíbrio Postural , Caminhada/fisiologia , Caminhada/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA