Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 476(4): 555-564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195948

RESUMO

The kidney plays a crucial role in acid-base homeostasis. In the distal nephron, α-intercalated cells contribute to urinary acid (H+) secretion and ß-intercalated cells accomplish urinary base (HCO3-) secretion. ß-intercalated cells regulate the acid base status through modulation of the apical Cl-/HCO3- exchanger pendrin (SLC26A4) activity. In this review, we summarize and discuss our current knowledge of the physiological role of the renal transporter AE4 (SLC4A9). The AE4, as cation-dependent Cl-/HCO3- exchanger, is exclusively expressed in the basolateral membrane of ß-intercalated cells and is essential for the sensing of metabolic acid-base disturbances in mice, but not for renal sodium reabsorption and plasma volume control. Potential intracellular signaling pathways are discussed that might link basolateral acid-base sensing through the AE4 to apical pendrin activity.


Assuntos
Túbulos Renais Coletores , Animais , Camundongos , Antiportadores de Cloreto-Bicarbonato/metabolismo , Rim/metabolismo , Túbulos Renais Coletores/metabolismo
2.
Adv Physiol Educ ; 47(1): 97-116, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476117

RESUMO

Vascular diseases of the legs are highly prevalent and constitute an important part of medical curricula. The understanding of these diseases relies on strongly interwoven aspects of vascular physiology and vascular medicine. We aimed to connect these within a horizontally integrated laboratory class on vascular physiology of the leg that was designed in cooperation between the departments of physiology and vascular surgery. Conceptually, we applied examination techniques of vascular medicine to visualize physiological parameters that are altered by the most frequent diseases. This facilitates integrative discussions on malfunctions, trains diagnostic skills, and bridges to vascular medicine. In four experiments, we use oscillometry and impedance venous occlusion plethysmography to address key aspects of the arterial and venous system of the legs: 1) arterial pulse wave, 2) arterial systolic blood pressure, 3) venous capacitance and venous outflow, and 4) reactive hyperemia. After the experiments, physiological vascular function, the associated diseases, their impact on the recorded parameters, and diagnostic options are discussed. To allow reproduction, we describe the course structure and the experimental setup in detail. We present the experimental data of a cohort of medical students and document learning success and student satisfaction. All experiments were feasible and provided robust data on physiologically and clinically relevant vascular functions. The activity was perceived positively by the students and led to a substantial improvement of knowledge. With this work, we offer a template for reproduction or variation of a proven concept of horizontally integrated teaching of vascular physiology of the leg.NEW & NOTEWORTHY This article presents an integrative laboratory class on vascular physiology bridging to vascular medicine. The four experiments rely on oscillometry and venous occlusion plethysmography. We describe in detail this new class regarding structure, experimental setup, and experimental procedure, and we give insight into the applied materials. Moreover, we present the experimental data of 74 students and a quantitative evaluation of the students' learning success and acceptance.


Assuntos
Cardiologia , Fisiologia , Humanos , Pletismografia/métodos , Veias/fisiologia , Pressão Sanguínea
3.
BMC Med Educ ; 22(1): 515, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778720

RESUMO

BACKGROUND: E-learning based laboratory classes can replace or enhance in-classroom laboratories. They typically offer temporal flexibility, self-determined learning speed, repeatability and do not require supervision or face-to-face contact. The aim of this feasibility study was to investigate whether the established in-classroom laboratory class on the baroreceptor reflex (BRR) can be transformed into a new e-learning based asynchronous laboratory class for untrained, non-supervised students without medical equipment. The BRR is a fundamental cardiovascular process which is regularly visualized in physiology during in-classroom laboratories by a student-performed Active Standing Test (AST). During this voluntary provocation of orthostatic stress, the BRR reliably causes a solid rise in heart rate (HR) and a stabilization or even increase in blood pressure (BP). METHODS: The conventional AST was modified by omission of BP measurements which would require medical devices and was embedded into a framework of interactive digital material allowing independent student performance. With specific adaptions, this instrument was implemented to 1st and 2nd year curricula of human medicine, dental medicine, midwifery and pharmacy. An audience response system was used to collect the students' data on HR, epidemiology, technical problems, satisfaction and orthostatic symptoms. As primary outcome, we investigated the students' correct performance of the modified AST regarding textbook conformity of the HR data. Secondary outcomes included technical feasibility, the students' satisfaction and consistency of HR data within predefined subgroups (e.g., gender, curricula). Descriptive statistics are reported. RESULTS: The class was completed by 217 students (mean age: 23 ± 8 [SD], 81% female, 19% male). Mean reported rise of HR during standing was ~ 20 bpm (~ 30%) which is highly concordant to textbooks. Reported feasibility (~ 80% negated any technical issues) and students' satisfaction (4.4 on 5-point Likert-scale) were high. The HR data were consistent within the subgroups. CONCLUSION: This study demonstrates that the highly relevant BRR can be successfully addressed in an e-learning based asynchronous laboratory class implementing a non-supervised AST restricted to HR measurements embedded in digital material. The robust HR response and the adjustable complexity allow an application to different healthcare-related curricula. This class, therefore, provides a broad audience access to a fundamental concept of cardiovascular physiology.


Assuntos
Barorreflexo , Instrução por Computador , Adolescente , Adulto , Currículo , Feminino , Humanos , Aprendizagem , Masculino , Estudantes , Adulto Jovem
4.
Cell Tissue Res ; 385(2): 393-404, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33394136

RESUMO

Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by hemodynamic injury. Inflammation also plays an important role in the pathophysiology and contributes to the deleterious consequences of this disease. Cells of the innate immune system including monocyte/macrophages and dendritic cells can promote blood pressure elevation via effects mostly on kidney and vascular function. Moreover, convincing evidence shows that T and B cells from the adaptive immune system are involved in hypertension and hypertensive end-organ damage. Skin monocyte/macrophages, regulatory T cells, natural killer T cells, and myeloid-derived suppressor cells have been shown to exert blood pressure controlling effects. Sodium intake is undoubtedly indispensable for normal body function but can be detrimental when taken in excess of dietary requirements. Sodium levels also modulate the function of monocyte/macrophages, dendritic cells, and different T cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome that can be found after high salt intake. Modulation of the immune response can reduce severity of blood pressure elevation and hypertensive end-organ damage in several animal models. The purpose of this review is to briefly summarize recent advances in immunity and hypertension as well as hypertensive end-organ damage.


Assuntos
Hipertensão/fisiopatologia , Inflamação/imunologia , Animais , Humanos
5.
Clin Auton Res ; 30(6): 531-540, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31974825

RESUMO

INTRODUCTION: Baroreflexes and peripheral chemoreflexes control efferent autonomic activity making these reflexes treatment targets for arterial hypertension. The literature on their interaction is controversial, with suggestions that their individual and collective influence on blood pressure and heart rate regulation is variable. Therefore, we applied a study design that allows the elucidation of individual baroreflex-chemoreflex interactions. METHODS: We studied nine healthy young men who breathed either normal air (normoxia) or an air-nitrogen-carbon dioxide mixture with decreased oxygen content (hypoxia) for 90 min, with randomization to condition, followed by a 30-min recovery period and then exposure to the other condition for 90 min. Multiple intravenous phenylephrine bolus doses were applied per condition to determine phenylephrine pressor sensitivity as an estimate of baroreflex blood pressure buffering and cardiovagal baroreflex sensitivity (BRS). RESULTS: Hypoxia reduced arterial oxygen saturation from 98.1 ± 0.4 to 81.0 ± 0.4% (p < 0.001), raised heart rate from 62.9 ± 2.1 to 76.0 ± 3.6 bpm (p < 0.001), but did not change systolic blood pressure (p = 0.182). Of the nine subjects, six had significantly lower BRS in hypoxia (p < 0.05), two showed a significantly decreased pressor response, and three showed a significantly increased pressor response to phenylephrine in hypoxia, likely through reduced baroreflex buffering (p < 0.05). On average, hypoxia decreased BRS by 6.4 ± 0.9 ms/mmHg (19.9 ± 2.0 vs. 14.12 ± 1.6 ms/mmHg; p < 0.001) but did not change the phenylephrine pressor response (p = 0.878). CONCLUSION: We applied an approach to assess individual baroreflex-chemoreflex interactions in human subjects. A subgroup exhibited significant impairments in baroreflex blood pressure buffering and BRS with peripheral chemoreflex activation. The methodology may have utility in elucidating individual pathophysiology and in targeting treatments modulating baroreflex or chemoreflex function.


Assuntos
Barorreflexo , Hipertensão , Pressão Sanguínea , Frequência Cardíaca , Humanos , Hipóxia , Masculino
6.
Am J Physiol Renal Physiol ; 315(6): F1526-F1535, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207169

RESUMO

The role of CX3CR1, also known as fractalkine receptor, in hypertension is unknown. The present study determined the role of the fractalkine receptor CX3CR1 in hypertensive renal and cardiac injury. Expression of CX3CR1 was determined using CX3CR1GFP/+ mice that express a green fluorescent protein (GFP) reporter in CX3CR1+ cells. FACS analysis of leukocytes isolated from the kidney showed that 34% of CD45+ cells expressed CX3CR1. Dendritic cells were the majority of positive cells (67%) followed by macrophages (10%), NK cells (6%), and T cells (10%). With the use of confocal microscopy, the receptor was detected in the kidney only on infiltrating cells but not on resident renal cells. To evaluate the role of CX3CR1 in hypertensive end-organ injury, an aggravated model of hypertension was used. Unilateral nephrectomy was performed followed by infusion of angiotensin II (ANG II, 1.5 ng·g-1·min-1) and a high-salt diet in wild-type ( n = 15) and CX3CR1-deficient mice ( n = 18). CX3CR1 deficiency reduced the number of renal dendritic cells and increased the numbers of renal CD11b/F4/80+ macrophages and CD11b/Ly6G+ neutrophils in ANG II-infused mice. Surprisingly, CX3CR1-deficient mice exhibited increased albuminuria, glomerular injury, and reduced podocyte density in spite of similar levels of arterial hypertension. In contrast, cardiac damage as assessed by increased heart weight, cardiac fibrosis, and expression of fetal genes, and matrix components were not different between both genotypes. Our findings suggest that CX3CR1 exerts protective properties by modulating the invasion of inflammatory cells in hypertensive renal injury. CX3CR1 inhibition should be avoided in hypertension because it may promote hypertensive renal injury.


Assuntos
Angiotensina II , Pressão Arterial , Receptor 1 de Quimiocina CX3C/metabolismo , Células Dendríticas/metabolismo , Hipertensão/metabolismo , Nefropatias/prevenção & controle , Rim/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Albuminúria/prevenção & controle , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia
7.
Am J Physiol Heart Circ Physiol ; 312(3): H349-H354, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986662

RESUMO

The self-amplifying cascade of messenger and effector molecules of the complement system serves as a powerful danger-sensing system that protects the host from a hostile microbial environment, while maintaining proper tissue and organ function through effective clearance of altered or dying cells. As an important effector arm of innate immunity, it also plays important roles in the regulation of adaptive immunity. Innate and adaptive immune responses have been identified as crucial players in the pathogenesis of arterial hypertension and hypertensive end organ damage. In line with this view, complement activation may drive the pathology of hypertension and hypertensive injury through its impact on innate and adaptive immune responses. It is well known that complement activation can cause tissue inflammation and injury and complement-inhibitory drugs are effective treatments for several inflammatory diseases. In addition to these proinflammatory properties, complement cleavage fragments of C3 and C5 can exert anti-inflammatory effects that dampen the inflammatory response to injury. Recent experimental data strongly support a role for complement in arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical hemolytic uremic syndrome, which is driven by complement activation, suggest a role for complement also in the development of malignant nephrosclerosis. Herein, we will review canonical and noncanonical pathways of complement activation as the framework to understand the multiple roles of complement in arterial hypertension and hypertensive end organ damage.


Assuntos
Proteínas do Sistema Complemento , Hipertensão/complicações , Hipertensão/fisiopatologia , Imunidade Adaptativa , Animais , Proteínas do Sistema Complemento/metabolismo , Humanos , Imunidade Inata
8.
J Am Soc Nephrol ; 27(3): 677-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26319245

RESUMO

Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to hemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign organisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Renal inflammation results in injury and impaired urinary sodium excretion, and vascular inflammation leads to endothelial dysfunction, increased vascular resistance, and arterial remodeling and stiffening. Notably, modulation of the immune response can reduce the severity of BP elevation and hypertensive end-organ damage in several animal models. Indeed, recent studies have improved our understanding of how the immune response affects the pathogenesis of arterial hypertension, but the remarkable advances in basic immunology made during the last few years still await translation to the field of hypertension. This review briefly summarizes recent advances in immunity and hypertension as well as hypertensive end-organ damage.


Assuntos
Imunidade Adaptativa/imunologia , Hipertensão/imunologia , Imunidade Inata/imunologia , Subpopulações de Linfócitos T , Pressão Arterial , Proteínas do Sistema Complemento/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Humanos , Hipertensão/complicações , Inflamassomos/imunologia , Macrófagos , Microbiota/imunologia , Monócitos , Nefrite/etiologia , Espécies Reativas de Oxigênio
9.
Am J Physiol Renal Physiol ; 310(11): F1356-65, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053686

RESUMO

Adaptive and innate immune responses contribute to hypertension and hypertensive end-organ damage. Here, we determined the role of anaphylatoxin C5a, a major inflammatory effector of the innate immune system that is generated in response to complement activation, in hypertensive end-organ damage. For this purpose, we assessed the phenotype of C5a receptor 1 (C5aR1)-deficient mice in ANG II-induced renal and cardiac injury. Expression of C5aR1 on infiltrating and resident renal as well as cardiac cells was determined using a green fluorescent protein (GFP)-C5aR1 reporter knockin mouse. Flow cytometric analysis of leukocytes isolated from the kidney of GFP-C5aR1 reporter mice showed that 28% of CD45-positive cells expressed C5aR1. Dendritic cells were identified as the major C5aR1-expressing population (88.5%) followed by macrophages and neutrophils. Using confocal microscopy, we detected C5aR1 in the kidney mainly on infiltrating cells. In the heart, only infiltrating cells stained C5aR1 positive. To evaluate the role of C5aR1 deficiency in hypertensive injury, an aggravated model of hypertension was used. Unilateral nephrectomy was performed followed by infusion of ANG II (1.5 ng·g(-1)·min(-1)) and salt in wild-type (n = 34) and C5aR1-deficient mice (n = 32). C5aR1-deficient mice exhibited less renal injury, as evidenced by significantly reduced albuminuria. In contrast, cardiac injury was accelerated with significantly increased cardiac fibrosis and heart weight in C5aR1-deficient mice after ANG II infusion. No effect was found on blood pressure. In summary, the C5a:C5aR1 axis drives end-organ damage in the kidney but protects from the development of cardiac fibrosis and hypertrophy in experimental ANG II-induced hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Rim/patologia , Miocárdio/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Angiotensina II , Animais , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/patologia , Rim/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/patologia , Receptor da Anafilatoxina C5a/genética
10.
Pflugers Arch ; 467(3): 605-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25588975

RESUMO

Recent studies suggest that primary changes in vascular resistance can cause sustained changes in arterial blood pressure. In this review, we summarize current knowledge about Cl(-) homeostasis in vascular smooth muscle cells. Within vascular smooth muscle cells, Cl(-) is accumulated above the electrochemical equilibrium, causing Cl(-) efflux, membrane depolarization, and increased contractile force when Cl(-) channels are opened. At least two different transport mechanisms contribute to raise [Cl(-)] i in vascular smooth muscle cells, anion exchange, and cation-chloride cotransport. Recent work suggests that TMEM16A-associated Ca(2+)-activated Cl(-) currents mediate Cl(-) efflux in vascular smooth muscle cells leading to vasoconstriction. Additional proteins associated with Cl(-) flux in vascular smooth muscle are bestrophins, which modulate vasomotion, the volume-activated LRRC8, and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl(-) transporters and Cl(-) channels in vascular smooth muscle cells (VSMCs) significantly contribute to the physiological regulation of vascular tone and arterial blood pressure.


Assuntos
Pressão Sanguínea , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição , Animais , Humanos , Transporte de Íons , Músculo Liso Vascular/fisiologia
11.
J Physiol ; 592(12): 2563-74, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24687584

RESUMO

The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKß1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKß1 knockout (BKß1(-/-)) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKß1(-/-) mice independent of genetic background, BKß1(-/-) strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKß1(+/+) controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKß1(-/-) strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKß1(+/+) strain A level. In contrast, loss of BKß1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKß1 expression increased blood pressure in BKß1(-/-) strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways.


Assuntos
Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Músculo Liso/fisiologia , Aldosterona/sangue , Animais , Aorta Torácica/fisiologia , Pressão Sanguínea/fisiologia , Técnicas In Vitro , Rim/fisiologia , Camundongos Transgênicos , Células Musculares/fisiologia , Oócitos/fisiologia , Xenopus
12.
J Physiol ; 592(5): 1139-57, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24396058

RESUMO

A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased.


Assuntos
Hiperpotassemia/fisiopatologia , Hipertensão Renal/fisiopatologia , Rim/fisiopatologia , Potássio na Dieta/metabolismo , Potássio/metabolismo , Sódio na Dieta/metabolismo , Sódio/metabolismo , Aldosterona/metabolismo , Animais , Pressão Sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Biol Chem ; 288(22): 16017-30, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23564460

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca(2+)-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca(2+) release in cardiac myocytes evoked by ß-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca(2+) signals sensitive to inhibitors of both acidic Ca(2+) stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca(2+) transients caused by high concentrations of the ß-adrenergic agonist isoproterenol. Ca(2+) transients were recorded both as increases of the free cytosolic Ca(2+) concentration and as decreases of the sarcoplasmic luminal Ca(2+) concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca(2+) transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Isoproterenol/farmacologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , NADP/análogos & derivados , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/patologia , Células Cultivadas , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/patologia , NADP/antagonistas & inibidores , NADP/metabolismo , Ácidos Nicotínicos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/imunologia , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
14.
Am J Physiol Renal Physiol ; 307(4): F407-17, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990898

RESUMO

Myeloperoxidase (MPO) is an enzyme expressed in neutrophils and monocytes/macrophages. Beside its well-defined role in innate immune defence, it may also be responsible for tissue damage. To identify the role of MPO in the progression of chronic kidney disease (CKD), we investigated CKD in a model of renal ablation in MPO knockout and wild-type mice. CKD was induced by 5/6 nephrectomy. Mice were followed for 10 wk to evaluate the impact of MPO deficiency on renal morbidity. Renal ablation induced CKD in wild-type mice with increased plasma levels of MPO compared with controls. No difference was found between MPO-deficient and wild-type mice regarding albuminuria 1 wk after renal ablation, indicating similar acute responses to renal ablation. Over the next 10 wk, however, MPO-deficient mice developed significantly less albuminuria and glomerular injury than wild-type mice. This was accompanied by a significantly lower renal mRNA expression of the fibrosis marker genes plasminogen activator inhibitor-I, collagen type III, and collagen type IV as well as matrix metalloproteinase-2 and matrix metalloproteinase-9. MPO-deficient mice also developed less renal inflammation after renal ablation, as indicated by a lower infiltration of CD3-positive T cells and F4/80-positive monocytes/macrophages compared with wild-type mice. In vitro chemotaxis of monocyte/macrophages isolated from MPO-deficient mice was impaired compared with wild-type mice. No significant differences were observed for mortality and blood pressure after renal ablation. In conclusion, these results demonstrate that MPO deficiency ameliorates renal injury in the renal ablation model of CKD in mice.


Assuntos
Erros Inatos do Metabolismo/fisiopatologia , Insuficiência Renal Crônica/prevenção & controle , Animais , Autofagia/fisiologia , Quimiotaxia de Leucócito/fisiologia , Masculino , Camundongos , Camundongos Knockout , Nefrectomia , Peroxidase/sangue , Insuficiência Renal Crônica/patologia
15.
Hum Mol Genet ; 21(5): 1025-36, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22082831

RESUMO

The human SLC4A5 gene has been identified as a hypertension susceptibility gene based on the association of single nucleotide polymorphisms with blood pressure (BP) levels and hypertension status. The biochemical basis of this association is unknown particularly since no single gene variant was linked to hypertension in humans. SLC4A5 (NBCe2, NBC4) is expressed in the collecting duct of the kidney and acts as an electrogenic ion-transporter that transports sodium and bicarbonate with a 1:2 or 1:3 stoichiometry allowing bicarbonate reabsorption with relatively minor concurrent sodium uptake. We have mutated the Slc4a5 gene in mice, which caused a persistent increase in systolic and diastolic BP. Slc4a5 mutant mice also displayed a compensated metabolic acidosis and hyporeninemic hypoaldosteronism. Analysis of kidney physiology revealed elevated fluid intake and urine excretion and increased glomerular filtration rate. Transcriptome analysis uncovers possible compensatory mechanisms induced by SLC4A5 mutation, including upregulation of SLC4A7 and pendrin as well as molecular mechanisms associated with hypertension. Induction of metabolic alkalosis eliminated the BP difference between wild-type and Slc4a5 mutant mice. We conclude that the impairment of the function of SLC4A5 favors development of a hypertensive state. We reason that the loss of sodium-sparing bicarbonate reabsorption by SLC4A5 initiates a regulatory cascade consisting of compensatory bicarbonate reabsorption via other sodium-bicarbonate transporters (e.g. SLC4A7) at the expense of an increased sodium uptake. This will ultimately raise BP and cause hypoaldosteronism, thus providing a mechanistic explanation for the linkage of the SLC4A5 locus to hypertension in humans.


Assuntos
Acidose Tubular Renal/genética , Regulação da Expressão Gênica , Hipertensão/genética , Túbulos Renais/metabolismo , Rim/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Equilíbrio Ácido-Base , Acidose Tubular Renal/metabolismo , Acidose Tubular Renal/fisiopatologia , Aldosterona/sangue , Animais , Fator Natriurético Atrial/sangue , Sangue , Análise Química do Sangue , Pressão Sanguínea , Taxa de Filtração Glomerular , Concentração de Íons de Hidrogênio , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hibridização In Situ , Masculino , Camundongos , Mutação , Deleção de Sequência , Sódio/metabolismo , Bicarbonato de Sódio/metabolismo , Micção , Urina/química
16.
Hypertension ; 81(1): 138-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909169

RESUMO

BACKGROUND: Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS: Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS: We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS: Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.


Assuntos
Complemento C3a , Hipertensão , Animais , Humanos , Camundongos , Anafilatoxinas , Angiotensina II , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Fatores de Transcrição Forkhead , Hipertensão/genética , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/genética , Receptores de Complemento/metabolismo
17.
Blood ; 117(4): 1350-8, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980678

RESUMO

Recruitment of polymorphonuclear neutrophils (PMNs) remains a paramount prerequisite in innate immune defense and a critical cofounder in inflammatory vascular disease. Neutrophil recruitment comprises a cascade of concerted events allowing for capture, adhesion and extravasation of the leukocyte. Whereas PMN rolling, binding, and diapedesis are well characterized, receptor-mediated processes, mechanisms attenuating the electrostatic repulsion between the negatively charged glycocalyx of leukocyte and endothelium remain poorly understood. We provide evidence for myeloperoxidase (MPO), an abundant PMN-derived heme protein, facilitating PMN recruitment by its positive surface charge. In vitro, MPO evoked highly directed PMN motility, which was solely dependent on electrostatic interactions with the leukocyte's surface. In vivo, PMN recruitment was shown to be MPO-dependent in a model of hepatic ischemia and reperfusion, upon intraportal delivery of MPO and in the cremaster muscle exposed to local inflammation or to intraarterial MPO application. Given MPO's affinity to both the endothelial and the leukocyte's surface, MPO evolves as a mediator of PMN recruitment because of its positive surface charge. This electrostatic MPO effect not only displays a so far unrecognized, catalysis-independent function of the enzyme, but also highlights a principal mechanism of PMN attraction driven by physical forces.


Assuntos
Infiltração de Neutrófilos , Neutrófilos/fisiologia , Peroxidase/fisiologia , Fenômenos Físicos , Animais , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/química , Peroxidase/genética , Peroxidase/metabolismo , Ligação Proteica/fisiologia , Eletricidade Estática , Propriedades de Superfície
18.
Nat Med ; 12(4): 452-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582915

RESUMO

The concept of regenerating diseased myocardium by implantation of tissue-engineered heart muscle is intriguing, but convincing evidence is lacking that heart tissues can be generated at a size and with contractile properties that would lend considerable support to failing hearts. Here we created large (thickness/diameter, 1-4 mm/15 mm), force-generating engineered heart tissue from neonatal rat heart cells. Engineered heart tissue formed thick cardiac muscle layers when implanted on myocardial infarcts in immune-suppressed rats. When evaluated 28 d later, engineered heart tissue showed undelayed electrical coupling to the native myocardium without evidence of arrhythmia induction. Moreover, engineered heart tissue prevented further dilation, induced systolic wall thickening of infarcted myocardial segments and improved fractional area shortening of infarcted hearts compared to controls (sham operation and noncontractile constructs). Thus, our study provides evidence that large contractile cardiac tissue grafts can be constructed in vitro, can survive after implantation and can support contractile function of infarcted hearts.


Assuntos
Transplante de Coração/métodos , Infarto do Miocárdio/patologia , Sístole , Engenharia Tecidual/métodos , Transplantes , Animais , Animais Recém-Nascidos , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Ecocardiografia , Estimulação Elétrica , Corantes Fluorescentes , Coração/efeitos dos fármacos , Indóis , Insulina/farmacologia , Contração Isométrica/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Microscopia Confocal , Contração Miocárdica/fisiologia , Infarto do Miocárdio/etiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Oxigênio/farmacologia , Ratos , Ratos Wistar , Fatores de Tempo , Função Ventricular Esquerda
19.
Eur Heart J ; 33(13): 1625-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21724624

RESUMO

AIMS: Observational studies have suggested a mechanistic link between the leucocyte-derived enzyme myeloperoxidase (MPO) and vasomotor function. Here, we tested whether MPO is systemically affecting vascular tone in humans. METHODS AND RESULTS: A total of 12 135 patients were screened for leucocyte peroxidase activity. We identified 15 individuals with low MPO expression and activity (MPO(low)), who were matched with 30 participants exhibiting normal MPO protein content and activity (control). Nicotine-dependent activation of leucocytes caused attenuation of endothelial nitric oxide (NO) bioavailability in the control group (P < 0.01), but not in MPO(low) individuals (P = 0.12); here the MPO burden of leucocytes correlated with the degree of vasomotor dysfunction (P = 0.008). To directly test the vasoactive properties of free circulating MPO, the enzyme was injected into the left atrium of anaesthetized, open-chest pigs. Myeloperoxidase plasma levels peaked within minutes and rapidly declined thereafter, reflecting vascular binding of MPO. Blood flow in the left anterior descending artery and the internal mammary artery (IMA) as well as myocardial perfusion decreased following MPO injection when compared with albumin-treated animals (P < 0.001). Isolated IMA-rings from animals subjected to MPO revealed markedly diminished relaxation in response to acetylcholine (P < 0.01) and nitroglycerine as opposed to controls (P < 0.001). CONCLUSION: Myeloperoxidase elicits profound effects on vascular tone of conductance and resistance vessels in vivo. These findings not only call for revisiting the biological functions of leucocytes as systemic and mobile effectors of vascular tone, but also identify MPO as a critical systemic regulator of vasomotion in humans and thus a potential therapeutic target.


Assuntos
Neutrófilos/enzimologia , Peroxidase/deficiência , Sistema Vasomotor/enzimologia , Adulto , Idoso , Animais , Velocidade do Fluxo Sanguíneo , Circulação Coronária/fisiologia , Endotélio Vascular/enzimologia , Hemodinâmica/fisiologia , Humanos , Masculino , Artéria Torácica Interna/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Ativação de Neutrófilo , Nicotina/farmacologia , Óxido Nítrico/metabolismo , Peroxidase/metabolismo , Peroxidase/farmacologia , Sus scrofa , Vasodilatação/fisiologia , Adulto Jovem
20.
Circulation ; 124(24): 2735-45, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22082678

RESUMO

BACKGROUND: The nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) and the leukocyte-derived hemoprotein myeloperoxidase (MPO) are associated with cardiovascular diseases. Activation of monocytes and polymorphonuclear neutrophils (PMNs) with concomitant release of MPO is regulated in a nitric oxide-dependent fashion. The aim of the study was to investigate a potential 2-way interaction between ADMA and MPO. METHODS AND RESULTS: Ex vivo, ADMA uptake by isolated human PMNs, the principal source of MPO in humans, significantly impaired nitric oxide synthase activity determined by gas chromatography-mass spectrometry. In humans, short-term ADMA infusion (0.0125 mg · kg(-1) · min(-1)) significantly increased MPO plasma concentrations. Functionally, PMN exposure to ADMA enhanced leukocyte adhesion to endothelial cells, augmented NADPH oxidase activity, and stimulated PMN degranulation, resulting in release of MPO. In vivo, a 28-day ADMA infusion (250 µmol · kg(-1) · d(-1)) in C57Bl/6 mice significantly increased plasma MPO concentrations, whereas this ADMA effect on MPO was attenuated by human dimethylarginine dimethylaminohydrolase1 (hDDAH1) overexpression. Moreover, the MPO-derived reactive molecule hypochlorous acid impaired recombinant hDDAH1 activity in vitro. In MPO(-/-) mice, the lipopolysaccharide-induced increase in systemic ADMA concentrations was abrogated. CONCLUSIONS: ADMA profoundly impairs nitric oxide synthesis of PMNs, resulting in increased PMN adhesion to endothelial cells, superoxide generation, and release of MPO. In addition, MPO impairs DDAH1 activity. Our data reveal an ADMA-induced cycle of PMN activation, enhanced MPO release, and subsequent impairment of DDAH1 activity. These findings not only highlight so far unrecognized cytokine-like properties of ADMA but also identify MPO as a regulatory switch for ADMA bioavailability under inflammatory conditions.


Assuntos
Arginina/análogos & derivados , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Peroxidase/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Arginina/farmacologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Células HL-60 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Neutrófilos/citologia , Óxido Nítrico/metabolismo , Peroxidase/deficiência , Peroxidase/genética , Transdução de Sinais/fisiologia , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA