Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 47(11): 1088-1099, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587162

RESUMO

OBJECTIVE: Obesity is an independent risk factor for severe influenza virus and COVID-19 infections. There might be an interplay between adipose tissue and respiratory pathogens, although the mechanism is unknown. Proinflammatory factors secreted by the adipose tissue are often discussed to serve as indirect contributor to virus infection. However, the direct potential of adipose tissue to serve as a viral niche has not yet been investigated. METHODS: Two murine obesity models (DIO and ob/ob) were infected with influenza A virus (IAV) and monitored for 3 weeks. p.i. Lung and adipose tissue were harvested, and the viral load was analysed. Direct replication of IAV in vitro was investigated in human derived primary adipocytes and macrophages. The indirect impact of the secretory products of adipocytes during infection was analysed in a co-culture system with lung fibroblasts. Moreover, lung and adipose tissue was harvested from deceased patients infected with SARS-CoV-2 omicron variant. Additionally, replication of SARS-CoV-2 alpha, delta, and omicron variants was investigated in vitro in adipocytes and macrophages. RESULTS: Both murine obesity models presented high IAV titers compared to non-obese mice. Interestingly, adipose tissue adjacent to the lungs was a focal point for influenza virus replication in mice. We further detected IAV replication and antiviral response in human adipocytes. Co-cultivation of adipocytes and lung fibroblasts led to increased IL-8 concentration during infection. Though we observed SARS-CoV-2 in the thoracic adipose tissue of COVID-19 patients, no active replication was found in adipocytes in vitro. However, SARS-CoV-2 was detected in the macrophages and this finding was associated with increased inflammation. CONCLUSIONS: Our study revealed that thoracic adipose tissue contributes to respiratory virus infection. Besides indirect induction of proinflammatory factors during infection, adipocytes and macrophages within the tissue can directly support viral replication.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Humanos , Camundongos , Animais , Pulmão , Tecido Adiposo , Vírus da Influenza A/fisiologia , Obesidade
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834031

RESUMO

As vaccination efforts against SARS-CoV-2 progress in many countries, there is still an urgent need for efficient antiviral treatment strategies for those with severer disease courses, and lately, considerable efforts have been undertaken to repurpose existing drugs as antivirals. The local anaesthetic procaine has been investigated for antiviral properties against several viruses over the past decades. Here, we present data on the inhibitory effect of the procaine prodrugs ProcCluster® and procaine hydrochloride on SARS-CoV-2 infection in vitro. Both procaine prodrugs limit SARS-CoV-2 progeny virus titres as well as reduce interferon and cytokine responses in a proportional manner to the virus load. The addition of procaine during the early stages of the SARS-CoV-2 replication cycle in a cell culture first limits the production of subgenomic RNA transcripts, and later affects the replication of the viral genomic RNA. Interestingly, procaine additionally exerts a prominent effect on SARS-CoV-2 progeny virus release when added late during the replication cycle, when viral RNA production and protein production are already largely completed.


Assuntos
COVID-19 , Pró-Fármacos , Animais , Chlorocebus aethiops , SARS-CoV-2 , Antivirais/farmacologia , Anestésicos Locais/farmacologia , Pró-Fármacos/farmacologia , Células Vero , Procaína/farmacologia , Replicação Viral
3.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637603

RESUMO

Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination.IMPORTANCESARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.

4.
Cell Microbiol ; 23(6): e13323, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33655690

RESUMO

Nonsense-mediated mRNA decay (NMD) was identified as a process to degrade flawed cellular messenger RNA (mRNA). Within the last decades it was also shown that NMD carries virus-restricting capacities and thus could be considered a part of the cellular antiviral system. As this was shown to affect primarily positive-sense single stranded RNA ((+)ssRNA) viruses there is only scarce knowledge if this also applies to negative-sense single stranded RNA ((-)ssRNA) viruses. Influenza A viruses (IAVs) harbour a segmented (-)ssRNA genome. During their replication IAVs produce numerous RNA transcripts and simultaneously impair cellular transcription and translation. The viral mRNAs hold several molecular patterns which can elicit NMD and in turn would lead to their degradation. This, in consequence, may mitigate viral propagation. Thus, we examined if a knockdown or a pharmacological inhibition of NMD key components may influence IAV replication. Additionally, we performed similar experiments with respiratory syncytial virus (RSV), another (-)ssRNA virus, but with a non-segmented genome. Although it seemed that a knockdown of up-frameshift protein 1 (UPF1), the central NMD factor, slightly increased viral mRNA and protein levels, no significant alteration of viral replication could be observed, implying that the NMD machinery may not have restricting capacities against (-)ssRNA viruses.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Células A549 , Inativação Gênica , Humanos , RNA Helicases/genética , RNA Viral/genética , Vírus Sinciciais Respiratórios/genética , Transativadores/genética , Replicação Viral
5.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805887

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease-19 (COVID-19) is still challenging healthcare systems and societies worldwide. While vaccines are available, therapeutic strategies are developing and need to be adapted to each patient. Many clinical approaches focus on the repurposing of approved therapeutics against other diseases. However, the efficacy of these compounds on viral infection or even harmful secondary effects in the context of SARS-CoV-2 infection are sparsely investigated. Similarly, adverse effects of commonly used therapeutics against lifestyle diseases have not been studied in detail. Using mono cell culture systems and a more complex chip model, we investigated the effects of the acetylsalicylic acid (ASA) salt D,L-lysine-acetylsalicylate + glycine (LASAG) on SARS-CoV-2 infection in vitro. ASA is commonly known as Aspirin® and is one of the most frequently used medications worldwide. Our data indicate an inhibitory effect of LASAG on SARS-CoV-2 replication and SARS-CoV-2-induced expression of pro-inflammatory cytokines and coagulation factors. Remarkably, our data point to an additive effect of the combination of LASAG and the antiviral acting drug remdesivir on SARS-CoV-2 replication in vitro.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Lisina
6.
Cell Microbiol ; 22(2): e13143, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31711273

RESUMO

The innate immune system, in particular the type I interferon (IFN) response, is a powerful defence against virus infections. In turn, many if not all viruses have evolved various means to circumvent, resist, or counteract this host response to ensure efficient replication and propagation. Influenza viruses are no exception to this rule, and several viral proteins have been described to possess IFN-antagonistic functions. Although the viral nonstructural protein 1 appears to be a major antagonist in influenza A and B viruses (IAV and IBV), we have previously shown that a specific motif in the IAV polymerase proteins exerts an IFN-suppressive function very early in infection. The question remained whether a similar function would also exist in IBV polymerases. Here, we show that indeed a specific amino acid position (A523) of the PB1 protein in the IBV polymerase complex confers IFN-antagonistic properties. Mutation of this position leads to enhanced activation of the IFN-mediated signalling pathway after infection and subsequent reduction of virus titres. This indicates that inhibition of innate immune responses is a conserved activity shared by polymerase proteins of IAV and IBV.


Assuntos
Vírus da Influenza B , Interferon Tipo I/antagonistas & inibidores , Proteínas do Nucleocapsídeo/imunologia , RNA Polimerase Dependente de RNA/imunologia , Proteínas Virais/imunologia , Células A549 , Animais , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Influenza Humana/virologia , Células Vero
7.
Planta Med ; 87(10-11): 818-826, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32781473

RESUMO

In a cytopathic effect inhibition assay, a standardized Rhodiola rosea root and rhizome extract, also known as roseroot extract (SHR-5), exerted distinct anti-influenza A virus activity against HK/68 (H3N2) (IC50 of 2.8 µg/mL) without being cytotoxic. For fast and efficient isolation and identification of the extract's bioactive constituents, a high-performance countercurrent chromatographic separation method was developed. It resulted in a three-stage gradient elution program using a mobile phase solvent system composed of ethyl acetate/n-butanol/water (1 : 4 : 5 → 2 : 3 : 5 → 3 : 2 : 5) in the reversed-phase mode. The elaborated high-performance countercurrent chromatographic method allowed for fractionation of the complex roseroot extract in a single chromatographic step in a way that only one additional orthogonal isolation/purification step per fraction yielded 12 isolated constituents. They cover a broad polarity range and belong to different structural classes, namely, the phenylethanoid tyrosol and its glucoside salidroside, the cinnamyl alcohol glycosides rosavin, rosarin, and rosin as well as gallic acid, the cyanogenic glucoside lotaustralin, the monoterpene glucosides rosiridin and kenposide A, and the flavonoids tricin, tricin-5-O-ß-D-glucopyranoside, and rhodiosin. The most promising anti-influenza activities were determined for rhodiosin, tricin, and tricin-5-O-ß-D-glucopyranoside with IC50 values of 7.9, 13, and 15 µM, respectively. The herein established high-performance countercurrent chromatographic protocol enables fast and scalable access to major as well as minor roseroot constituents. This is of particular relevance for extract standardization, quality control, and further in-depth pharmacological investigations of the metabolites of this popular traditional herbal remedy.


Assuntos
Rhodiola , Distribuição Contracorrente , Glicosídeos , Vírus da Influenza A Subtipo H3N2 , Raízes de Plantas
8.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067487

RESUMO

Influenza virus is a well-known respiratory pathogen, which still leads to many severe pulmonary infections in the human population every year. Morbidity and mortality rates are further increased if virus infection coincides with co-infections or superinfections caused by bacteria such as Streptococcus pneumoniae (S. pneumoniae) and Staphylococcus aureus (S. aureus). This enhanced pathogenicity is due to complex interactions between the different pathogens and the host and its immune system and is mainly governed by altered intracellular signaling processes. In this review, we summarize the recent findings regarding the innate and adaptive immune responses during co-infection with influenza virus and S. pneumoniae or S. aureus, describing the signaling pathways involved and how these interactions influence disease outcomes.


Assuntos
Coinfecção/imunologia , Imunidade/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Transdução de Sinais/imunologia , Infecções Estafilocócicas/imunologia , Animais , Humanos , Orthomyxoviridae/imunologia , Staphylococcus aureus/imunologia , Streptococcus pneumoniae/imunologia
9.
FASEB J ; 33(11): 12188-12199, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398292

RESUMO

Pattern recognition receptors (PRRs) are key elements in the innate immune response. Formyl peptide receptor (FPR) 2 is a PRR that, in addition to proinflammatory, pathogen-derived compounds, also recognizes the anti-inflammatory endogenous ligand annexin A1 (AnxA1). Because the contribution of this signaling axis in viral infections is undefined, we investigated AnxA1-mediated FPR2 activation on influenza A virus (IAV) infection in the murine model. AnxA1-treated mice displayed significantly attenuated pathology upon a subsequent IAV infection with significantly improved survival, impaired viral replication in the respiratory tract, and less severe lung damage. The AnxA1-mediated protection against IAV infection was not caused by priming of the type I IFN response but was associated with an increase in the number of alveolar macrophages (AMs) and enhanced pulmonary expression of the AM-regulating cytokine granulocyte-M-CSF (GM-CSF). Both AnxA1-mediated increase in AM levels and GM-CSF production were abrogated when mouse (m)FPR2 signaling was antagonized but remained up-regulated in mice genetically deleted for mFPR1, an mFPR2 isoform also serving as AnxA1 receptor. Our results indicate a novel protective function of the AnxA1-FPR2 signaling axis in IAV pathology via GM-CSF-associated maintenance of AMs, expanding knowledge on the potential use of proresolving mediators in host defense against pathogens.-Schloer, S., Hübel, N., Masemann, D., Pajonczyk, D., Brunotte, L., Ehrhardt, C., Brandenburg, L.-O., Ludwig, S., Gerke, V., Rescher, U. The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model.


Assuntos
Anexina A1/fisiologia , Vírus da Influenza A/fisiologia , Macrófagos Alveolares/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores de Formil Peptídeo/fisiologia , Replicação Viral , Animais , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Vírus da Influenza A/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
10.
Cell Microbiol ; 21(1): e12955, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223301

RESUMO

Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK-mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late-stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti-RSV strategies.


Assuntos
Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Sistema de Sinalização das MAP Quinases , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais de Fusão/metabolismo , Replicação Viral , Animais , Células Cultivadas , Humanos , Transporte Proteico
11.
FASEB J ; 32(5): 2779-2793, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401589

RESUMO

Superinfections with Staphylococcus aureus are a major complication of influenza disease, causing excessive inflammation and tissue damage. This enhanced cell-damaging effect is also observed in superinfected tissue cultures, leading to a strong decrease in overall cell viability. In our analysis of the underlying molecular mechanisms, we observed that, despite enhanced cell damage in superinfection, S. aureus did not increase but rather inhibited influenza virus (IV)-induced apoptosis in cells on the level of procaspase-8 activation. This apparent contradiction was solved when we observed that S. aureus mediated a switch from apoptosis to necrotic cell death of IV-infected cells, a mechanism that was dependent on the bacterial accessory gene regulator ( agr) locus that promotes bacterial survival and spread. This so far unknown action may be a bacterial strategy to enhance dissemination of intracellular S. aureus and may thereby contribute to increased tissue damage and severity of disease.-Van Krüchten, A., Wilden, J. J., Niemann, S., Peters, G., Löffler, B., Ludwig, S., Ehrhardt, C. Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death.


Assuntos
Apoptose/imunologia , Células Endoteliais da Veia Umbilical Humana , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana , Infecções Estafilocócicas , Staphylococcus aureus/imunologia , Animais , Caspase 8/imunologia , Cães , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/microbiologia , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Influenza Humana/imunologia , Influenza Humana/microbiologia , Influenza Humana/patologia , Células Madin Darby de Rim Canino , Necrose , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/virologia
12.
Cell Microbiol ; 19(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28076660

RESUMO

Expression of the influenza A virus (IAV) nonstructural protein (NS1) results in the activation of c-Jun N-terminal kinase (JNK). Both NS1 and JNK are involved in apoptosis induction. To investigate their interrelationship, we stably expressed a tamoxifen inducible NS1 oestrogen receptor fusion-protein (NS1ERT) in mammalian cells. Upon tamoxifen stimulation, NS1ERT-expressing cells partially rescued the attenuated replication of NS1-deficient IAVs and also inhibited interferon up-regulation, confirming the functional competence of NS1ERT. Tamoxifen-induced NS1ERT created a cytopathic phenotype and led to the activation of JNK and apoptosis. Induction of NS1F103SERT mutant failed to activate JNK, but induced apoptosis, whereas the induction of NS1M106IERT led to JNK phosphorylation, but not apoptosis, indicating that JNK activation and apoptosis induction are not functionally linked. Further mutational analysis highlighted that apoptosis induction is a function of the C-terminal effector domain of NS1. Finally, IAVs encoding mutant NS1 revealed a modulating effect of NS1 on apoptosis induction in a genuine infection. With respect to apoptogenicity, an NS1 mutant virus that results in a super activation of JNK behaves similarly to the JNK nonactivating virus expressing NS1F103S, thus confirming that NS1-mediated JNK activation and apoptosis induction are also functionally independent from each other in vivo.


Assuntos
Apoptose/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/genética , Proteínas não Estruturais Virais/genética , Células A549 , Animais , Linhagem Celular , Cães , Ativação Enzimática , Células HEK293 , Humanos , Vírus da Influenza A/metabolismo , Células Madin Darby de Rim Canino , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tamoxifeno/metabolismo , Proteínas não Estruturais Virais/metabolismo
13.
Cell Microbiol ; 18(6): 784-91, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26687707

RESUMO

Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Interferon beta/metabolismo , Treonina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Proteína DEAD-box 58/metabolismo , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Interferon beta/genética , Células Madin Darby de Rim Canino/virologia , Mutação , Fosforilação , Regiões Promotoras Genéticas , Receptores Imunológicos , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
14.
Cell Microbiol ; 17(3): 303-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25293394

RESUMO

Bacterial super-infections are a major complication in influenza virus-infected patients. In response to infection with influenza viruses and bacteria, a complex interplay of cellular signalling mechanisms is initiated, regulating the anti-pathogen response but also pathogen-supportive functions. Here, we show that influenza viruses replicate to a higher efficiency in cells co-infected with Staphylococcus aureus (S. aureus). While cells initially respond with increased induction of interferon beta upon super-infection, subsequent interferon signalling and interferon-stimulated gene expression are rather impaired due to a block of STAT1-STAT2 dimerization. Thus, S. aureus interrupts the first line of defence against influenza viruses, resulting in a boost of viral replication, which may lead to enhanced viral pathogenicity.


Assuntos
Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Orthomyxoviridae/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Staphylococcus aureus/imunologia , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Orthomyxoviridae/fisiologia , Multimerização Proteica
15.
J Infect Dis ; 211(9): 1418-28, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25367299

RESUMO

BACKGROUND: Nonstructural protein 1 (NS1) proteins from avian influenza viruses like the 1918 pandemic NS1 are capable of inhibiting the key signaling integrator c-Abl (Abl1), resulting in massive cytopathic cell alterations. METHODS: In the current study, we addressed the consequences of NS1-mediated alteration of c-Abl on acute lung injury and pathogenicity in an in vivo mouse model. RESULTS: Comparing isogenic strains that differ only in their ability to inhibit c-Abl, we observed elevated pathogenicity for the c-Abl-inhibiting virus. NS1-mediated blockade of c-Abl resulted in severe lung pathology and massive edema formation and facilitated secondary bacterial pneumonia. This phenotype was independent of differences in replication and immune responses, defining it as an NS1 virulence mechanism distinct from its canonical functions. Microarray analysis revealed extensive downregulation of genes involved in cell integrity and vascular endothelial regulation. CONCLUSIONS: NS1 protein-mediated blockade of c-Abl signaling drives acute lung injury and primes for bacterial coinfections revealing potential insights into the pathogenicity of the 1918 pandemic virus.


Assuntos
Lesão Pulmonar Aguda/etiologia , Infecções Bacterianas/etiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Pandêmica, 1918-1919 , Infecções por Orthomyxoviridae/virologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas não Estruturais Virais/metabolismo , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/patologia , Animais , Biomarcadores , Humanos , Pulmão/patologia , Pulmão/virologia , Camundongos , Proteínas Proto-Oncogênicas c-abl/genética
16.
Immunology ; 145(4): 519-33, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25819746

RESUMO

Targeting of antigens to the endocytic uptake receptor DEC205 resulted in enhanced antigen presentation by dendritic cells (DCs). In combination with adjuvants for DC maturation, proteins coupled to an antibody against DEC205 induced strong pathogen-specific immune responses, whereas without additional adjuvant tolerance could be induced. As less is known about DNA vaccines encoding DEC205-targeted antigens, we explored the immunogenicity and efficacy of a dendritic cell-targeted DNA vaccine against influenza A virus (IAV) delivered by electroporation. Although coupling of haemagglutinin to a single-chain antibody against DEC205 enhanced antigen presentation on MHC class II and activation of T-cell receptor-transgenic CD4 T cells, the T-cell responses induced by the targeted DNA vaccine in wild-type BALB/c mice were significantly reduced compared with DNA encoding non-targeted antigens. Consistently, these mice were less protected against an IAV infection. Adoptive transfer experiments were performed to assess the fate of the antigen-specific T cells in animals vaccinated with DNA encoding DEC205-targeted antigens. By this, we could exclude the general deletion of antigen-specific T cells as cause for the reduced efficacy, but observed a local expansion of antigen-specific regulatory T cells, which could suppress the activation of effector cells. In conclusion, DNA vaccines encoding DEC205-targeted antigens induce peripheral tolerance rather than immunity in our study. Finally, we evaluated our DNA vaccines as prophylactic or therapeutic treatment in an allergen-induced asthma mouse model.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Tolerância Imunológica/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/farmacologia , Lectinas Tipo C/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Superfície Celular/imunologia , Vacinas de DNA/farmacologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/farmacologia , Asma/imunologia , Asma/prevenção & controle , Feminino , Células HEK293 , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos , Antígenos de Histocompatibilidade Menor , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de DNA/genética , Vacinas de DNA/imunologia
17.
J Virol ; 88(16): 8843-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872593

RESUMO

UNLABELLED: A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE: Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection.


Assuntos
Sequência de Aminoácidos/genética , Vírus da Influenza A/genética , Influenza Humana/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Infecções por Orthomyxoviridae/genética , Proteínas não Estruturais Virais/genética , Animais , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Cães , Células HEK293 , Humanos , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Influenza Humana/virologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células Madin Darby de Rim Canino , Mutagênese Sítio-Dirigida/métodos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/genética , Tretinoína/metabolismo , Proteínas não Estruturais Virais/metabolismo
18.
Cell Microbiol ; 16(12): 1854-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25052580

RESUMO

The non-structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1-CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c-Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c-Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c-Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c-Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c-Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Aves , Linhagem Celular , Humanos , Vírus da Influenza A/isolamento & purificação , Ligação Proteica
19.
Bioorg Med Chem ; 23(15): 4277-4285, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26145819

RESUMO

Amantadine (1) exerts its anti-Parkinson effects by inhibition of the NMDA associated cation channel and its antiviral activity by inhibition of the M2 protein channel of influenza A viruses. Herein the synthesis, NMDA receptor affinity and anti-influenza activity of analogous propellanamines 3 are reported. The key steps in the synthesis of the diastereomeric propellanamines syn-3 and anti-3 are diastereoselective reduction of the ketone 7 with L-Selectride to give anti-11, Mitsunobu inversion of the alcohol anti-13 into syn-13, and SN2 substitution of diastereomeric mesylates syn-14 and anti-14 with NaN3. The affinity of the propellanamines syn-3 and anti-3 to the PCP binding site of the NMDA receptor is similar to that of amantadine (Ki=11 µM). However, both propellanamines syn-3 and anti-3 do not exhibit activity against influenza A viruses. Compared to amantadine (1), the structurally related propellanamines syn-3 and anti-3 retain the NMDA antagonistic activity but loose the antiviral activity.


Assuntos
Amantadina/farmacologia , Antivirais/química , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Amantadina/análogos & derivados , Amantadina/metabolismo , Animais , Antivirais/síntese química , Sítios de Ligação , Linhagem Celular , Técnicas de Química Sintética , Cristalografia por Raios X , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células Madin Darby de Rim Canino , Memantina/metabolismo , Memantina/farmacologia , Fenciclidina/metabolismo , Eletricidade Estática , Estereoisomerismo
20.
J Infect Dis ; 209(4): 532-41, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23983213

RESUMO

The identification of amino acid motifs responsible for increased virulence and/or transmission of influenza viruses is of enormous importance to predict pathogenicity of upcoming influenza strains. We phenotypically and genotypically compared 2 variants of influenza virus A/PR/8/34 with different passage histories. The analysis revealed differences in virulence due to an altered type I interferon (IFN) induction, as evidenced by experiments using IFNAR(-/-) mice. Interestingly, these differences were not due to altered functions of the well-known viral IFN antagonists NS1 or PB1-F2. Using reassortant viruses, we showed that differences in the polymerase proteins and nucleoprotein determined the altered virulence. In particular, changes in PB1 and PA contributed to an altered host type I IFN response, indicating IFN antagonistic properties of these proteins. Thus, PB1 and PA appear to harbor previously unknown virulence markers, which may prove helpful in assessing the risk potential of emerging influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/virologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Galinhas , Citocinas/análise , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Interferon Tipo I/metabolismo , Estimativa de Kaplan-Meier , Pulmão/química , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Interferon alfa e beta/genética , Fator de Transcrição STAT1 , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Virulência/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA