Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768789

RESUMO

Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional cues and its role in regulating glucagon-like peptide 1 (GLP-1) action in WAT. Solutions with different nutrients were administered to Wistar rats and postprandial dopamine levels showed elevations following a mixed meal and glucose intake. In high-fat diet-fed diabetic Goto-Kakizaki rats, sleeve gastrectomy upregulated dopaminergic machinery, showing the role of the gut in dopamine signaling in WAT. Bromocriptine treatment in the same model increased GLP-1R in WAT, showing the role of dopamine in regulating GLP-1R. By contrast, treatment with the GLP-1 receptor agonist Liraglutide had no impact on dopamine receptors. GLP-1 and dopamine crosstalk was shown in rat WAT explants, since dopamine upregulated GLP-1-induced AMPK activity in mesenteric WAT in the presence of the D2R and D3R inhibitor Domperidone. In human WAT, dopamine receptor 1 (D1DR) and GLP-1R expression were correlated. Our results point out a dietary and gut regulation of plasma dopamine, acting in the WAT to regulate GLP-1 action. Together with the known dopamine action in the pancreas, such results may identify new therapeutic opportunities to improve metabolic control in metabolic disorders.


Assuntos
Glucagon , Glucose , Animais , Humanos , Ratos , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Dopamina , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/metabolismo , Insulina/metabolismo , Ratos Wistar
2.
Pharmacol Res ; 161: 105198, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32942016

RESUMO

Methylglyoxal was shown to impair adipose tissue capillarization and insulin sensitivity in obese models. We hypothesized that glyoxalase-1 (GLO-1) activity could be diminished in the adipose tissue of type 2 diabetic obese patients. Moreover, we assessed whether such activity could be increased by GLP-1-based therapies in order to improve adipose tissue capillarization and insulin sensitivity. GLO-1 activity was assessed in visceral adipose tissue of a cohort of obese patients. The role of GLP-1 in modulating GLO-1 was assessed in type 2 diabetic GK rats submitted to sleeve gastrectomy or Liraglutide treatment, in the adipose tissue angiogenesis assay and in the HUVEC cell line. Glyoxalase-1 activity was decreased in visceral adipose tissue of pre-diabetic and diabetic obese patients, together with other markers of adipose tissue dysfunction and correlated with increased HbA1c levels. Decreased adipose tissue GLO-1 levels in GK rats were increased by sleeve gastrectomy and Liraglutide, being associated with overexpression of angiogenic and vasoactive factors, as well as insulin receptor phosphorylation (Tyr1161). Moreover, GLP-1 increased adipose tissue capillarization and HUVEC proliferation in a glyoxalase-dependent manner. Lower adipose tissue GLO-1 activity was observed in dysmetabolic patients, being a target for GLP-1 in improving adipose tissue capillarization and insulin sensitivity.


Assuntos
Tecido Adiposo/irrigação sanguínea , Capilares/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Resistência à Insulina , Lactoilglutationa Liase/metabolismo , Liraglutida/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Adulto , Idoso , Animais , Capilares/enzimologia , Capilares/fisiopatologia , Células Cultivadas , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Feminino , Gastrectomia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/enzimologia , Obesidade/fisiopatologia , Obesidade/cirurgia , Ratos Wistar , Transdução de Sinais
3.
Surg Endosc ; 29(2): 438-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24993174

RESUMO

BACKGROUND: Pathophysiology of type 2 diabetes (T2D) includes insulin resistance (IR) and insufficient insulin secretion. Remission in obese patients can be achieved through surgically induced weight loss. Sleeve gastrectomy is a novel technique for the treatment of morbid obesity, and its effects on the metabolic syndrome and T2D have not yet been fully understood. METHODS: From February 2008 to July 2010, sleeve gastrectomy as stand-alone treatment for severe or morbid obesity was performed in 23 patients with T2D or impaired fasting glucose (IFG). No postoperative complications occurred and patients were dismissed from hospital on day 2 after surgery. Body mass index (BMI), fasting blood glucose (FBG) and fasting insulin were determined before and up to 24 months after surgery. IR and beta cell function were calculated using the modified homeostasis model assessment (HOMA2). RESULTS: BMI, FBG and fasting insulin improved significantly as early as 3 months after surgery. Threefold increased preoperative insulin resistance (3.05) decreased to near-normal values (1.14) during the same period. Interestingly, overall beta cell function diminished at 12 months of follow-up (79.6 %), in comparison with preoperative values (117.8 %). Patients with a markedly reduced preoperative beta cell function (<40 %) did not achieve a complete remission after surgery. CONCLUSIONS: In obese patients with T2D and IFG, commonly characterized by an augmented beta cell function and an increased insulin resistance, sleeve gastrectomy induces remission through reduction of insulin resistance. Preoperative IR and beta cell function calculated by HOMA2 deserve further studies in patients undergoing metabolic surgery.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Gastrectomia/métodos , Intolerância à Glucose/complicações , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Obesidade Mórbida/complicações , Adulto , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/sangue , Jejum/sangue , Feminino , Seguimentos , Intolerância à Glucose/sangue , Humanos , Insulina/sangue , Laparoscopia , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/sangue , Obesidade Mórbida/cirurgia , Período Pós-Operatório , Período Pré-Operatório , Estudos Retrospectivos , Redução de Peso/fisiologia , Adulto Jovem
4.
Obes Surg ; 29(9): 2942-2951, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31119700

RESUMO

INTRODUCTION: Metabolic surgery has become an accepted option for the treatment of obesity and associated metabolic diseases like hypertension and type 2 diabetes. Adipose tissue dysfunction and ectopic storage of excess lipids are thought to be involved in the underlying pathophysiological process. OBJECTIVES: The present study aims to clarify the effect of sleeve gastrectomy (SG) on adipose tissue microvasculature and health in an animal model of adipose type 2 diabetes. METHODS: After weaning, diabetic Goto-Kakizaki rats were either fed on standard rat chow or high-calorie diet. At 4 months, animals on high-calorie diet were randomized to SG, sham surgery, or control group. Non-diabetic Wistar rats served as further controls. At 6 months, glucose and lipid metabolisms were studied in vivo. After sacrifice, periepididymal adipose tissue was collected for histology and analysis of parameters of adipose tissue metabolism and insulin sensitivity. RESULTS: SG decreased body and adipose tissue weight and improved glycemic and lipid profiles. Fasting glycemia, area under the curve after intraperitoneal insulin tolerance test, and insulin resistance were decreased in operated animals. SG also reduced circulating triglycerides and cholesterol while increasing serum adiponectin and adipose tissue peroxisome proliferator-activated receptor γ (PPAR-γ) and perilipin A. Additionally, surgery improved adipose tissue vascular function and markedly increased vascular endothelial growth factor, cluster of differentiation 31, and endothelial nitric oxide synthase. CONCLUSIONS: In our obese animal model of type 2 diabetes, SG significantly improved adipose tissue health and angiogenesis while reducing insulin resistance, involving PPAR-γ and markers of sprouting angiogenesis and endothelial function.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gastrectomia , Neovascularização Fisiológica/fisiologia , Obesidade Mórbida/cirurgia , Adiponectina , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/cirurgia , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Masculino , Obesidade Mórbida/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Adv Neurobiol ; 19: 213-236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933067

RESUMO

In moderately or morbidly obese patients, bariatric surgery has been proven to be an effective therapeutic approach to control body weight and comorbidities. Surgery-mediated modulation of brain function via modified postoperative secretion of gut peptides and vagal nerve stimulation was identified as an underlying mechanism in weight loss and improvement of weight-related diseases. Increased basal and postprandial plasma levels of gastrointestinal hormones like glucagon-like peptide 1 and peptide YY that act on specific areas of the hypothalamus to reduce food intake, either directly or mediated by the vagus nerve, are observed after surgery while suppression of meal-induced ghrelin release is increased. Hormones released from the adipose tissue like leptin and adiponectin are also affected and leptin plasma levels are reduced in treated patients. Besides homeostatic control of body weight, surgery also changes hedonistic behavior in regard to food intake and cognitive performance involving the limbic system and prefrontal areas.


Assuntos
Cirurgia Bariátrica , Encéfalo/metabolismo , Cognição , Metabolismo Energético , Obesidade/cirurgia , Adiponectina/metabolismo , Encéfalo/fisiopatologia , Ingestão de Alimentos , Comportamento Alimentar , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Homeostase , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Leptina/metabolismo , Sistema Límbico/metabolismo , Sistema Límbico/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Peptídeo YY/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Nervo Vago/fisiopatologia
6.
Adv Neurobiol ; 19: 49-70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933061

RESUMO

Food intake and energy expenditure are closely regulated by several mechanisms which involve peripheral organs and nervous system, in order to maintain energy homeostasis.Short-term and long-term signals express the size and composition of ingested nutrients and the amount of body fat, respectively. Ingested nutrients trigger mechanical forces and gastrointestinal peptide secretion which provide signals to the brain through neuronal and endocrine pathways. Pancreatic hormones also play a role in energy balance exerting a short-acting control regulating the start, end, and composition of a meal. In addition, insulin and leptin derived from adipose tissue are involved in long-acting adiposity signals and regulate body weigh as well as the amount of energy stored as fat over time.This chapter focuses on the gastrointestinal-, pancreatic-, and adipose tissue-derived signals which are integrated in selective orexigenic and anorexigenic brain areas that, in turn, regulate food intake, energy expenditure, and peripheral metabolism.


Assuntos
Tecido Adiposo/metabolismo , Regulação do Apetite , Encéfalo/metabolismo , Metabolismo Energético , Hormônios Gastrointestinais/metabolismo , Trato Gastrointestinal/metabolismo , Obesidade/metabolismo , Pâncreas/metabolismo , Hormônios Pancreáticos/metabolismo , Adiposidade , Peso Corporal , Ingestão de Alimentos , Ingestão de Energia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Leptina/metabolismo
7.
Obes Surg ; 25(1): 7-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24902653

RESUMO

BACKGROUND: In obese diabetic patients, bariatric surgery has been shown to induce remission of type 2 diabetes. Along with weight loss itself, changes in gut hormone profiles after surgery play an important role in the amelioration of glycemic control. However, the potential of gastrointestinal surgery regarding diabetes remission in non-severely obese diabetic patients has yet to be defined. In the present experimental study, we explored the effect of established bariatric procedures with and without duodenal exclusion on glycemic control and gut hormone profile in a lean animal model of type 2 diabetes. METHODS: Forty 12- to 14-week-old non-obese diabetic Goto-Kakizaki (GK) rats were randomly assigned to four groups: control group (GKC), sham surgery (GKSS), sleeve gastrectomy (GKSG), and gastric bypass (GKGB). Age-matched Wistar rats served as a non-diabetic control group (WIC). Glycemic control and plasma lipids were assessed at the beginning of the observation period and 4 weeks after surgery. Fasting and mixed meal-induced plasma levels of ghrelin, glucagon-like peptide-17-36 (GLP-1), and peptide tyrosine-tyrosine (PYY) were measured. RESULTS: In GK rats, glycemic control improved after sleeve gastrectomy (SG) and gastric bypass (GB). Mixed meal-induced gut hormone profiles in Wistar rats (WIC) were significantly different from those of sham-operated or control group GK rats. After SG and GB, GK rats showed a similar postprandial decrease in ghrelin as observed in non-diabetic WIC. Following both surgical procedures, a significant meal-induced increase in PYY and GLP-1 could be demonstrated. CONCLUSIONS: SG and GB induce a similar improvement in overall glycemic control in lean diabetic rodents. Meal-induced profiles of ghrelin, GLP-1, and PYY in GK rats are significantly modified by SG and GB and become similar to those of non-diabetic Wistar rats. Our data do not support the hypothesis that duodenal exclusion and early contact of food with the ileal mucosa alone explain changes in gut hormone profile in GK rats after gastrointestinal surgery.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 2/cirurgia , Gastrectomia , Derivação Gástrica , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Gastrectomia/métodos , Derivação Gástrica/métodos , Humanos , Insulina/sangue , Masculino , Ratos , Ratos Wistar , Magreza/sangue , Magreza/complicações , Magreza/patologia , Magreza/cirurgia , Resultado do Tratamento , Redução de Peso/fisiologia
8.
J Endocrinol ; 223(3): 255-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25274989

RESUMO

Excessive or inadequate glucagon secretion promoting hepatic gluconeogenesis and glycogenolysis is believed to contribute to hyperglycemia in patients with type 2 diabetes. Currently, metabolic surgery is an accepted treatment for obese patients with type 2 diabetes and has been shown to improve glycemic control in Goto-Kakizaki (GK) rats, a lean animal model for type 2 diabetes. However, the effects of surgery on glucagon secretion are not yet well established. In this study, we randomly assigned forty 12- to 14-week-old GK rats to four groups: control group (GKC), sham surgery (GKSS), sleeve gastrectomy (GKSG), and gastric bypass (GKGB). Ten age-matched Wistar rats served as a non-diabetic control group (WIC). Glycemic control was assessed before and 4 weeks after surgery. Fasting- and mixed-meal-induced plasma levels of insulin and glucagon were measured. Overall glycemic control improved in GKSG and GKGB rats. Fasting insulin levels in WIC rats were similar to those for GKC or GKSS rats. Fasting glucagon levels were highest in GKGB rats. Whereas WIC, GKC, and GKSS rats showed similar glucagon levels, without any significant meal-induced variation, a significant rise occurred in GKSG and GKGB rats, 30 min after a mixed meal, which was maintained at 60 min. Both GKSG and GKGB rats showed an elevated glucagon:insulin ratio at 60 min in comparison with all other groups. Surprisingly, the augmented post-procedural glucagon secretion was accompanied by an improved overall glucose metabolism in GKSG and GKGB rats. Understanding the role of glucagon in the pathophysiology of type 2 diabetes requires further research.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Glucagon/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Jejum/sangue , Gastrectomia/métodos , Derivação Gástrica/métodos , Glucagon/sangue , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Masculino , Período Pós-Prandial , Distribuição Aleatória , Ratos , Ratos Wistar , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA