Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(34): e2204510119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969781

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and chitin and are important for biomass conversion in the biosphere as well as in biorefineries. The target polysaccharides of LPMOs naturally occur in copolymeric structures such as plant cell walls and insect cuticles that are rich in phenolic compounds, which contribute rigidity and stiffness to these materials. Since these phenolics may be photoactive and since LPMO action depends on reducing equivalents, we hypothesized that LPMOs may enable light-driven biomass conversion. Here, we show that redox compounds naturally present in shed insect exoskeletons enable harvesting of light energy to drive LPMO reactions and thus biomass conversion. The primary underlying mechanism is that irradiation of exoskeletons with visible light leads to the generation of H2O2, which fuels LPMO peroxygenase reactions. Experiments with a cellulose model substrate show that the impact of light depends on both light and exoskeleton dosage and that light-driven LPMO activity is inhibited by a competing H2O2-consuming enzyme. Degradation experiments with the chitin-rich exoskeletons themselves show that solubilization of chitin by a chitin-active LPMO is promoted by light. The fact that LPMO reactions, and likely reactions catalyzed by other biomass-converting redox enzymes, are fueled by light-driven abiotic reactions in nature provides an enzyme-based explanation for the known impact of visible light on biomass conversion.


Assuntos
Peróxido de Hidrogênio , Oxigenases de Função Mista , Exoesqueleto , Animais , Biomassa , Catálise , Celulose/metabolismo , Quitina/metabolismo , Peróxido de Hidrogênio/metabolismo , Insetos , Luz , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo
2.
J Biol Chem ; 299(9): 105094, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507015

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.


Assuntos
Oxigenases de Função Mista , Peroxidases , Polissacarídeos , Substâncias Redutoras , Ácido Ascórbico/metabolismo , Biocatálise , Cobre/metabolismo , Estabilidade Enzimática , Meia-Vida , Peróxido de Hidrogênio/metabolismo , Cinética , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Peroxidases/metabolismo , Polissacarídeos/metabolismo , Substâncias Redutoras/metabolismo , Serratia marcescens/enzimologia , Serratia marcescens/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/metabolismo
3.
J Biol Chem ; 299(11): 105262, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734553

RESUMO

A considerable number of lytic polysaccharide monooxygenases (LPMOs) and other carbohydrate-active enzymes are modular, with catalytic domains being tethered to additional domains, such as carbohydrate-binding modules, by flexible linkers. While such linkers may affect the structure, function, and stability of the enzyme, their roles remain largely enigmatic, as do the reasons for natural variation in length and sequence. Here, we have explored linker functionality using the two-domain cellulose-active ScLPMO10C from Streptomyces coelicolor as a model system. In addition to investigating the WT enzyme, we engineered three linker variants to address the impact of both length and sequence and characterized these using small-angle X-ray scattering, NMR, molecular dynamics simulations, and functional assays. The resulting data revealed that, in the case of ScLPMO10C, linker length is the main determinant of linker conformation and enzyme performance. Both the WT and a serine-rich variant, which have the same linker length, demonstrated better performance compared with those with either a shorter linker or a longer linker. A highlight of our findings was the substantial thermostability observed in the serine-rich variant. Importantly, the linker affects thermal unfolding behavior and enzyme stability. In particular, unfolding studies show that the two domains unfold independently when mixed, whereas the full-length enzyme shows one cooperative unfolding transition, meaning that the impact of linkers in biomass-processing enzymes is more complex than mere structural tethering.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Modelos Moleculares , Dobramento de Proteína , Domínio Catalítico , Celulose/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Serina , Estabilidade Proteica , Ativação Enzimática , Simulação de Acoplamento Molecular , Streptomyces/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estrutura Terciária de Proteína
4.
Biomacromolecules ; 25(5): 3076-3086, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634234

RESUMO

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Assuntos
Celulose , Celulose/química , Fibra de Algodão , Cromatografia em Gel/métodos
5.
Microb Cell Fact ; 23(1): 19, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212746

RESUMO

BACKGROUND: Utilization of commensal bacteria for delivery of medicinal proteins, such as vaccine antigens, is an emerging strategy. Here, we describe two novel food-grade strains of lactic acid bacteria, Lactiplantibacillus pentosus KW1 and KW2, as well as newly developed tools for using this relatively unexplored but promising bacterial species for production and surface-display of heterologous proteins. RESULTS: Whole genome sequencing was performed to investigate genomic features of both strains and to identify native proteins enabling surface display of heterologous proteins. Basic characterization of the strains revealed the optimum growth temperatures for both strains to be 35-37 °C, with peak heterologous protein production at 33 °C (KW1) and 37 °C (KW2). Negative staining revealed that only KW1 produces closely bound exopolysaccharides. Production of heterologous proteins with the inducible pSIP-expression system enabled high expression in both strains. Exposure to KW1 and KW2 skewed macrophages toward the antigen presenting state, indicating potential adjuvant properties. To develop these strains as delivery vehicles, expression of the mycobacterial H56 antigen was fused to four different strain-specific surface-anchoring sequences. CONCLUSION: All experiments that enabled comparison of heterologous protein production revealed KW1 to be the better recombinant protein production host. Use of the pSIP expression system enabled successful construction of L. pentosus strains for production and surface display of an antigen, underpinning the potential of these strains as novel delivery vehicles.


Assuntos
Bactérias , Proteínas Recombinantes/metabolismo , Bactérias/metabolismo , Sequenciamento Completo do Genoma
6.
Biochemistry ; 62(12): 1976-1993, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37255464

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze oxidative cleavage of polysaccharides, such as cellulose and chitin. LPMO catalysis requires a reductant, such as ascorbic acid, and hydrogen peroxide, which can be generated in situ in the presence of molecular oxygen and various electron donors. While it is known that reduced LPMOs are prone to autocatalytic oxidative damage due to off-pathway reactions with the oxygen co-substrate, little is known about the structural consequences of such damage. Here, we present atomic-level insights into how the structure of the chitin-active SmLPMO10A is affected by oxidative damage using NMR and circular dichroism spectroscopy. Incubation with ascorbic acid could lead to rearrangements of aromatic residues, followed by more profound structural changes near the copper-active site and loss of activity. Longer incubation times induced changes in larger parts of the structure, indicative of progressing oxidative damage. Incubation with ascorbic acid in the presence of chitin led to similar changes in the observable (i.e., not substrate-bound) fraction of the enzyme. Upon subsequent addition of H2O2, which drastically speeds up chitin hydrolysis, NMR signals corresponding to seemingly intact SmLPMO10A reappeared, indicating dissociation of catalytically competent LPMO. Activity assays confirmed that SmLPMO10A retained catalytic activity when pre-incubated with chitin before being subjected to conditions that induce oxidative damage. Overall, this study provides structural insights into the process of oxidative damage of SmLPMO10A and demonstrates the protective effect of the substrate.


Assuntos
Peróxido de Hidrogênio , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Cobre/química , Polissacarídeos , Quitina/química , Substâncias Redutoras , Espectroscopia de Ressonância Magnética , Oxigênio
7.
J Biol Chem ; 298(11): 102593, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244452

RESUMO

Enterocin K1 (EntK1), a bacteriocin that is highly potent against vancomycin-resistant enterococci, depends on binding to an intramembrane protease of the site-2 protease family, RseP, for its antimicrobial activity. RseP is highly conserved in both EntK1-sensitive and EntK1-insensitive bacteria, and the molecular mechanisms underlying the interaction between RseP and EntK1 and bacteriocin sensitivity are unknown. Here, we describe a mutational study of RseP from EntK1-sensitive Enterococcus faecium to identify regions of RseP involved in bacteriocin binding and activity. Mutational effects were assessed by studying EntK1 sensitivity and binding with strains of naturally EntK1-insensitive Lactiplantibacillus plantarum-expressing various RseP variants. We determined that site-directed mutations in conserved sequence motifs related to catalysis and substrate binding, and even deletion of two such motifs known to be involved in substrate binding, did not abolish bacteriocin sensitivity, with one exception. A mutation of a highly conserved asparagine, Asn359, in the extended so-called LDG motif abolished both binding of and killing by EntK1. By constructing various hybrids of the RseP proteins from sensitive E. faecium and insensitive L. plantarum, we showed that the extracellular PDZ domain is the key determinant of EntK1 sensitivity. Taken together, these data may provide valuable insight for guided construction of novel bacteriocins and may contribute to establishing RseP as an antibacterial target.


Assuntos
Bacteriocinas , Enterococcus faecium , Proteínas de Escherichia coli , Bacteriocinas/genética , Bacteriocinas/farmacologia , Proteínas de Escherichia coli/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Enterococcus faecium/metabolismo , Metaloproteases
8.
J Am Chem Soc ; 145(34): 18888-18903, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584157

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.


Assuntos
Cobre , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Cobre/química , Peróxido de Hidrogênio/metabolismo , Polissacarídeos/metabolismo , Glutamatos
9.
Chembiochem ; 24(14): e202300363, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37191321

RESUMO

Chitin, the most abundant amino polysaccharide in Nature, has many applications in different fields. However, processing of this recalcitrant biopolymer in an environmentally friendly manner remains a major challenge. In this context, lytic polysaccharide monooxygenases (LPMOs) are of interest, as they can act on the most recalcitrant parts of chitin and related insoluble biopolymers such as cellulose. Efficient LPMO catalysis can be achieved by feeding reactions with H2 O2 , but careful control of H2 O2 is required to avoid autocatalytic enzyme inactivation. Herein, we present a coupled enzyme system in which a choline oxidase from Arthrobacter globiformis is employed for controlled in situ generation of H2 O2 that fuels LPMO-catalyzed oxidative degradation of chitin. We show that the rate, stability and extent of the LPMO reaction can be manipulated by varying the amount of choline oxidase and/or its substrate, choline chloride, and that efficient peroxygenase reactions may be achieved using sub-µM concentrations of the H2 O2 -generating enzyme. This coupled system requires only sub-stoichiometric amounts of the reductant that is needed to keep the LPMO in its active, reduced state. It is conceivable that this enzyme system may be used for bioprocessing of chitin in choline-based natural deep eutectic solvents.


Assuntos
Oxigenases de Função Mista , Polissacarídeos , Polissacarídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Quitina/metabolismo
10.
Biotechnol Bioeng ; 120(3): 726-736, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36471631

RESUMO

Simultaneous saccharification and fermentation (SSF) is a well-known strategy for valorization of lignocellulosic biomass. Because the fermentation process typically is anaerobic, oxidative enzymes found in modern commercial cellulase cocktails, such as lytic polysaccharide monooxygenases (LPMOs), may be inhibited, limiting the overall efficiency of the enzymatic saccharification. Recent discoveries, however, have shown that LPMOs are active under anoxic conditions if they are provided with H2 O2 at low concentrations. In this study, we build on this concept and investigate the potential of using externally added H2 O2 to sustain oxidative cellulose depolymerization by LPMOs during an SSF process for lactic acid production. The results of bioreactor experiments with 100 g/L cellulose clearly show that continuous addition of small amounts of H2 O2 (at a rate of 80 µM/h) during SSF enables LPMO activity and improves lactic acid production. While further process optimization is needed, the present proof-of-concept results show that modern LPMO-containing cellulase cocktails such as Cellic CTec2 can be used in SSF setups, without sacrificing the LPMO activity in these cocktails.


Assuntos
Celulase , Celulose , Celulose/metabolismo , Fermentação , Ácido Láctico , Polissacarídeos , Celulase/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(3): 1504-1513, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907317

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of monocopper enzymes broadly distributed across the tree of life. Recent reports indicate that LPMOs can use H2O2 as an oxidant and thus carry out a novel type of peroxygenase reaction involving unprecedented copper chemistry. Here, we present a combined computational and experimental analysis of the H2O2-mediated reaction mechanism. In silico studies, based on a model of the enzyme in complex with a crystalline substrate, suggest that a network of hydrogen bonds, involving both the enzyme and the substrate, brings H2O2 into a strained reactive conformation and guides a derived hydroxyl radical toward formation of a copper-oxyl intermediate. The initial cleavage of H2O2 and subsequent hydrogen atom abstraction from chitin by the copper-oxyl intermediate are the main energy barriers. Stopped-flow fluorimetry experiments demonstrated that the priming reduction of LPMO-Cu(II) to LPMO-Cu(I) is a fast process compared to the reoxidation reactions. Using conditions resulting in single oxidative events, we found that reoxidation of LPMO-Cu(I) is 2,000-fold faster with H2O2 than with O2, the latter being several orders of magnitude slower than rates reported for other monooxygenases. The presence of substrate accelerated reoxidation by H2O2, whereas reoxidation by O2 became slower, supporting the peroxygenase paradigm. These insights into the peroxygenase nature of LPMOs will aid in the development and application of enzymatic and synthetic copper catalysts and contribute to a further understanding of the roles of LPMOs in nature, varying from biomass conversion to chitinolytic pathogenesis-defense mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Celulose/química , Celulose/metabolismo , Quitina/química , Cobre/química , Cobre/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxirredução , Serratia marcescens/enzimologia
12.
Proc Natl Acad Sci U S A ; 117(32): 19178-19189, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723819

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO-substrate interaction. Using NMR spectroscopy, we have elucidated the solution-phase structure of apo-BlLPMO10A from Bacillus licheniformis, along with solution-phase structural characterization of the Cu(I)-LPMO, showing that the presence of the metal has minimal effects on the overall protein structure. We have, moreover, used paramagnetic relaxation enhancement (PRE) to characterize Cu(II)-LPMO by NMR spectroscopy. In addition, a multifrequency continuous-wave (CW)-EPR and 15N-HYSCORE spectroscopy study on the uniformly isotope-labeled 63Cu(II)-bound 15N-BlLPMO10A along with its natural abundance isotopologue determined copper spin-Hamiltonian parameters for LPMOs to markedly improved accuracy. The data demonstrate that large changes in the Cu(II) spin-Hamiltonian parameters are induced upon binding of the substrate. These changes arise from a rearrangement of the copper coordination sphere from a five-coordinate distorted square pyramid to one which is four-coordinate near-square planar. There is also a small reduction in metal-ligand covalency and an attendant increase in the d(x2-y2) character/energy of the singly occupied molecular orbital (SOMO), which we propose from density functional theory (DFT) calculations predisposes the copper active site for the formation of a stable Cu-O2 intermediate. This switch in orbital character upon addition of chitin provides a basis for understanding the coupling of substrate binding with O2 activation in chitin-active AA10 LPMOs.


Assuntos
Bacillus licheniformis/enzimologia , Proteínas de Bactérias/química , Quitina/metabolismo , Oxigenases de Função Mista/química , Oxigênio/metabolismo , Bacillus licheniformis/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Quitina/química , Cobre/química , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Imageamento por Ressonância Magnética , Oxigenases de Função Mista/metabolismo , Oxigênio/química , Especificidade por Substrato
13.
J Biol Chem ; 297(6): 101421, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798071

RESUMO

The discovery of oxidative cleavage of recalcitrant polysaccharides by lytic polysaccharide monooxygenases (LPMOs) has affected the study and industrial application of enzymatic biomass processing. Despite being widespread in fungi, LPMOs belonging to the auxiliary activity (AA) family AA11 have been understudied. While these LPMOs are considered chitin active, some family members have little or no activity toward chitin, and the only available crystal structure of an AA11 LPMO lacks features found in bacterial chitin-active AA10 LPMOs. Here, we report structural and functional characteristics of a single-domain AA11 LPMO from Aspergillus fumigatus, AfAA11A. The crystal structure shows a substrate-binding surface with features resembling those of known chitin-active LPMOs. Indeed, despite the absence of a carbohydrate-binding module, AfAA11A has considerable affinity for α-chitin and, more so, ß-chitin. AfAA11A is active toward both these chitin allomorphs and enhances chitin degradation by an endoacting chitinase, in particular for α-chitin. The catalytic activity of AfAA11A on chitin increases when supplying reactions with hydrogen peroxide, showing that, like LPMOs from other families, AfAA11A has peroxygenase activity. These results show that, in stark contrast to the previously characterized AfAA11B from the same organism, AfAA11A likely plays a role in fungal chitin turnover. Thus, members of the hitherto rather enigmatic family of AA11 LPMOs show considerable structural and functional differences and may have multiple roles in fungal physiology.


Assuntos
Aspergillus fumigatus/enzimologia , Quitina/genética , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Cristalografia por Raios X , Domínios Proteicos , Especificidade por Substrato
14.
J Biol Chem ; 297(4): 101084, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411561

RESUMO

Among the extensive repertoire of carbohydrate-active enzymes, lytic polysaccharide monooxygenases (LPMOs) have a key role in recalcitrant biomass degradation. LPMOs are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides such as cellulose and chitin. Several LPMOs contain carbohydrate-binding modules (CBMs) that are known to promote LPMO efficiency. However, structural and functional properties of some CBMs remain unknown, and it is not clear why some LPMOs, like CjLPMO10A from the soil bacterium Cellvibrio japonicus, have multiple CBMs (CjCBM5 and CjCBM73). Here, we studied substrate binding by these two CBMs to shine light on their functional variation and determined the solution structures of both by NMR, which constitutes the first structure of a member of the CBM73 family. Chitin-binding experiments and molecular dynamics simulations showed that, while both CBMs bind crystalline chitin with Kd values in the micromolar range, CjCBM73 has higher affinity for chitin than CjCBM5. Furthermore, NMR titration experiments showed that CjCBM5 binds soluble chitohexaose, whereas no binding of CjCBM73 to this chitooligosaccharide was detected. These functional differences correlate with distinctly different arrangements of three conserved aromatic amino acids involved in substrate binding. In CjCBM5, these residues show a linear arrangement that seems compatible with the experimentally observed affinity for single chitin chains. On the other hand, the arrangement of these residues in CjCBM73 suggests a wider binding surface that may interact with several chitin chains. Taken together, these results provide insight into natural variation among related chitin-binding CBMs and the possible functional implications of such variation.


Assuntos
Proteínas de Bactérias/química , Cellvibrio/enzimologia , Quitosana/química , Oxigenases de Função Mista/química , Oligossacarídeos/química , Domínios Proteicos
15.
Appl Environ Microbiol ; 88(6): e0009622, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080911

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that oxidatively degrade various polysaccharides. Genes encoding LPMOs in the AA9 family are abundant in filamentous fungi while their multiplicity remains elusive. We describe a detailed functional characterization of six AA9 LPMOs from the ascomycetous fungus Thermothielavioides terrestris LPH172 (syn. Thielavia terrestris). These six LPMOs were shown to be upregulated during growth on different lignocellulosic substrates in our previous study. Here, we produced them heterologously in Pichia pastoris and tested their activity on various model and native plant cell wall substrates. All six T. terrestris AA9 (TtAA9) LPMOs produced hydrogen peroxide in the absence of polysaccharide substrate and displayed peroxidase-like activity on a model substrate, yet only five of them were active on selected cellulosic substrates. TtLPMO9A and TtLPMO9E were also active on birch acetylated glucuronoxylan, but only when the xylan was combined with phosphoric acid-swollen cellulose (PASC). Another of the six AA9s, TtLPMO9G, was active on spruce arabinoglucuronoxylan mixed with PASC. TtLPMO9A, TtLPMO9E, TtLPMO9G, and TtLPMO9T could degrade tamarind xyloglucan and, with the exception of TtLPMO9T, beechwood xylan when combined with PASC. Interestingly, none of the tested enzymes were active on wheat arabinoxylan, konjac glucomannan, acetylated spruce galactoglucomannan, or cellopentaose. Overall, these functional analyses support the hypothesis that the multiplicity of the fungal LPMO genes assessed in this study relates to the complex and recalcitrant structure of lignocellulosic biomass. Our study also highlights the importance of using native substrates in functional characterization of LPMOs, as we were able to demonstrate distinct, previously unreported xylan-degrading activities of AA9 LPMOs using such substrates. IMPORTANCE The discovery of LPMOs in 2010 has revolutionized the industrial biotechnology field, mainly by increasing the efficiency of cellulolytic enzyme cocktails. Nonetheless, the biological purpose of the multiplicity of LPMO-encoding genes in filamentous fungi has remained an open question. Here, we address this point by showing that six AA9 LPMOs from a single fungal strain have various substrate preferences and activities on tested cellulosic and hemicellulosic substrates, including several native xylan substrates. Importantly, several of these activities could only be detected when using copolymeric substrates that likely resemble plant cell walls more than single fractionated polysaccharides do. Our results suggest that LPMOs have evolved to contribute to the degradation of different complex structures in plant cell walls where different biomass polymers are closely associated. This knowledge together with the elucidated novel xylanolytic activities could aid in further optimization of enzymatic cocktails for efficient degradation of lignocellulosic substrates and more.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Sordariales
16.
Biochemistry ; 60(47): 3633-3643, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34738811

RESUMO

The copper-dependent lytic polysaccharide monooxygenases (LPMOs) are receiving attention because of their role in the degradation of recalcitrant biomass and their intriguing catalytic properties. The fundamentals of LPMO catalysis remain somewhat enigmatic as the LPMO reaction is affected by a multitude of LPMO- and co-substrate-mediated (side) reactions that result in a complex reaction network. We have performed kinetic studies with two LPMOs that are active on soluble substrates, NcAA9C and LsAA9A, using various reductants typically employed for LPMO activation. Studies with NcAA9C under "monooxygenase" conditions showed that the impact of the reductant on catalytic activity is correlated with the hydrogen peroxide-generating ability of the LPMO-reductant combination, supporting the idea that a peroxygenase reaction is taking place. Indeed, the apparent monooxygenase reaction could be inhibited by a competing H2O2-consuming enzyme. Interestingly, these fungal AA9-type LPMOs were found to have higher oxidase activity than bacterial AA10-type LPMOs. Kinetic analysis of the peroxygenase activity of NcAA9C on cellopentaose revealed a fast stoichiometric conversion of high amounts of H2O2 to oxidized carbohydrate products. A kcat value of 124 ± 27 s-1 at 4 °C is 20 times higher than a previously described kcat for peroxygenase activity on an insoluble substrate (at 25 °C) and some 4 orders of magnitude higher than typical "monooxygenase" rates. Similar studies with LsAA9A revealed differences between the two enzymes but confirmed fast and specific peroxygenase activity. These results show that the catalytic site arrangement of LPMOs provides a unique scaffold for highly efficient copper redox catalysis.


Assuntos
Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Biomassa , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Cinética , Lentinula/enzimologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Neurospora crassa/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
17.
J Proteome Res ; 20(8): 4041-4052, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34191517

RESUMO

Chitin is an abundant natural polysaccharide that is hard to degrade because of its crystalline nature and because it is embedded in robust co-polymeric materials containing other polysaccharides, proteins, and minerals. Thus, it is of interest to study the enzymatic machineries of specialized microbes found in chitin-rich environments. We describe a genomic and proteomic analysis of Andreprevotia ripae, a chitinolytic Gram-negative bacterium isolated from an anthill. The genome of A. ripae encodes four secreted family GH19 chitinases of which two were detected and upregulated during growth on chitin. In addition, the genome encodes as many as 25 secreted GH18 chitinases, of which 17 were detected and 12 were upregulated during growth on chitin. Finally, the single lytic polysaccharide monooxygenase (LPMO) was strongly upregulated during growth on chitin. Whereas 66% of the 29 secreted chitinases contained two carbohydrate-binding modules (CBMs), this fraction was 93% (13 out of 14) for the upregulated chitinases, suggesting an important role for these CBMs. Next to an unprecedented multiplicity of upregulated chitinases, this study reveals several chitin-induced proteins that contain chitin-binding CBMs but lack a known catalytic function. These proteins are interesting targets for discovery of enzymes used by nature to convert chitin-rich biomass. The MS proteomic data have been deposited in the PRIDE database with accession number PXD025087.


Assuntos
Betaproteobacteria/enzimologia , Quitinases , Proteômica , Animais , Formigas/microbiologia , Proteínas de Bactérias/genética , Betaproteobacteria/isolamento & purificação , Quitina , Quitinases/genética , Oxigenases de Função Mista/genética , Polissacarídeos
18.
J Biol Chem ; 295(27): 9134-9146, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32398257

RESUMO

Findings from recent studies have indicated that enzymes containing more than one catalytic domain may be particularly powerful in the degradation of recalcitrant polysaccharides such as chitin and cellulose. Some known multicatalytic enzymes contain several glycoside hydrolase domains and one or more carbohydrate-binding modules (CBMs). Here, using bioinformatics and biochemical analyses, we identified an enzyme, Jd1381 from the actinobacterium Jonesia denitrificans, that uniquely combines two different polysaccharide-degrading activities. We found that Jd1381 contains an N-terminal family AA10 lytic polysaccharide monooxygenase (LPMO), a family 5 chitin-binding domain (CBM5), and a family 18 chitinase (Chi18) domain. The full-length enzyme, which seems to be the only chitinase produced by J. denitrificans, degraded both α- and ß-chitin. Both the chitinase and the LPMO activities of Jd1381 were similar to those of other individual chitinases and LPMOs, and the overall efficiency of chitin degradation by full-length Jd1381 depended on its chitinase and LPMO activities. Of note, the chitin-degrading activity of Jd1381 was comparable with or exceeded the activities of combinations of well-known chitinases and an LPMO from Serratia marcescens Importantly, comparison of the chitinolytic efficiency of Jd1381 with the efficiencies of combinations of truncated variants-JdLPMO10 and JdCBM5-Chi18 or JdLPMO10-CBM5 and JdChi18-indicated that optimal Jd1381 activity requires close spatial proximity of the LPMO10 and the Chi18 domains. The demonstration of intramolecular synergy between LPMOs and hydrolytic enzymes reported here opens new avenues toward the development of efficient catalysts for biomass conversion.


Assuntos
Actinobacteria/enzimologia , Quitinases/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Celulose/metabolismo , Quitina/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Hidrólise , Oxigenases de Função Mista/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Polissacarídeos/metabolismo , Especificidade por Substrato
19.
Appl Environ Microbiol ; 87(24): e0165221, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613755

RESUMO

Family AA9 lytic polysaccharide monooxygenases (LPMOs) are abundant in fungi, where they catalyze oxidative depolymerization of recalcitrant plant biomass. These AA9 LPMOs cleave cellulose and some also act on hemicelluloses, primarily other (substituted) ß-(1→4)-glucans. Oxidative cleavage of xylan has been shown for only a few AA9 LPMOs, and it remains unclear whether this activity is a minor side reaction or primary function. Here, we show that Neurospora crassa LPMO9F (NcLPMO9F) and the phylogenetically related, hitherto uncharacterized NcLPMO9L from N. crassa are active on both cellulose and cellulose-associated glucuronoxylan but not on glucuronoxylan alone. A newly developed method for simultaneous quantification of xylan-derived and cellulose-derived oxidized products showed that NcLPMO9F preferentially cleaves xylan when acting on a cellulose-beechwood glucuronoxylan mixture, yielding about three times more xylan-derived than cellulose-derived oxidized products. Interestingly, under similar conditions, NcLPMO9L and the previously characterized McLPMO9H, from Malbranchea cinnamomea, showed different xylan-to-cellulose preferences, giving oxidized product ratios of about 0.5:1 and 1:1, respectively, indicative of functional variation among xylan-active LPMOs. Phylogenetic and structural analysis of xylan-active AA9 LPMOs led to the identification of characteristic structural features, including unique features that do not occur in phylogenetically remote AA9 LPMOs, such as four AA9 LPMOs whose lack of activity toward glucuronoxylan was demonstrated in the present study. Taken together, the results provide a path toward discovery of additional xylan-active LPMOs and show that the huge family of AA9 LPMOs has members that preferentially act on xylan. These findings shed new light on the biological role and industrial potential of these fascinating enzymes. IMPORTANCE Plant cell wall polysaccharides are highly resilient to depolymerization by hydrolytic enzymes, partly due to cellulose chains being tightly packed in microfibrils that are covered by hemicelluloses. Lytic polysaccharide monooxygenases (LPMOs) seem well suited to attack these resilient copolymeric structures, but the occurrence and importance of hemicellulolytic activity among LPMOs remain unclear. Here, we show that certain AA9 LPMOs preferentially cleave xylan when acting on a cellulose-glucuronoxylan mixture, and that this ability is the result of protein evolution that has resulted in a clade of AA9 LPMOs with specific structural features. Our findings strengthen the notion that the vast arsenal of AA9 LPMOs in certain fungal species provides functional versatility and that AA9 LPMOs may have evolved to promote oxidative depolymerization of a wide variety of recalcitrant, copolymeric plant polysaccharide structures. These findings have implications for understanding the biological roles and industrial potential of LPMOs.


Assuntos
Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Neurospora crassa , Xilanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Oxirredução , Filogenia , Xilanos/metabolismo
20.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397696

RESUMO

Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.2.2.26), which can degrade alginate, poly-ß-d-mannuronate, and poly-α-l-guluronate within a broad range of pHs, temperatures, and salinity conditions. Site-directed mutagenesis showed that tyrosine Y251, previously suggested to act as a catalytic acid, indeed is essential for catalysis, whereas mutation of tyrosine Y446, previously proposed to act as a catalytic base, did not affect enzyme activity. The observed reaction products are protonated and deprotonated forms of the 4,5-unsaturated uronic acid monomer, Δ, two hydrates of DEH (4-deoxy-l-erythro-5-hexulosuronate), which are formed after ring opening, and, finally, two epimers of a 5-member hemiketal called 4-deoxy-d-manno-hexulofuranosidonate (DHF), formed through intramolecular cyclization of hydrated DEH. The detection and nuclear magnetic resonance (NMR) assignment of these hemiketals refine our current understanding of alginate degradation.IMPORTANCE The potential markets for seaweed-derived products and seaweed processing technologies are growing, yet commercial enzyme cocktails for complete conversion of seaweed to fermentable sugars are not available. Such an enzyme cocktail would require the catalytic properties of a variety of different enzymes, where fucoidanases, laminarinases, and cellulases together with endo- and exo-acting alginate lyases would be the key enzymes. Here, we present an exo-acting alginate lyase that efficiently produces monomeric sugars from alginate. Since it is only the second characterized exo-acting alginate lyase capable of degrading alginate at a high industrially relevant temperature (≥60°C), this enzyme may be of great biotechnological and industrial interest. In addition, in-depth NMR-based structural elucidation revealed previously undescribed rearrangement products of the unsaturated monomeric sugars generated from exo-acting lyases. The insight provided by the NMR assignment of these products facilitates future assessment of product formation by alginate lyases.


Assuntos
Alginatos/metabolismo , Polissacarídeo-Liases/metabolismo , DNA de Plantas , Metagenômica , Picea , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA