Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(31): e2206098119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878031

RESUMO

Cilia are sensory and secretory organelles that both receive information from the environment and transmit signals. Cilia-derived vesicles (ectosomes), formed by outward budding of the ciliary membrane, carry enzymes and other bioactive products; this process represents an ancient mode of regulated secretion. Peptidergic intercellular communication controls a wide range of physiological and behavioral responses and occurs throughout eukaryotes. The Chlamydomonas reinhardtii genome encodes what appear to be numerous prepropeptides and enzymes homologous to those used to convert metazoan prepropeptides into bioactive peptide products. Since C. reinhardtii, a green alga, lack the dense core vesicles in which metazoan peptides are processed and stored, we explored the hypothesis that propeptide processing and secretion occur through the regulated release of ciliary ectosomes. A synthetic peptide (GATI-amide) that could be generated from a 91-kDa peptide precursor (proGATI) serves as a chemotactic modulator, attracting minus gametes while repelling plus gametes. Here we dissect the processing pathway that leads to formation of an amidated peptidergic sexual signal specifically on the ciliary ectosomes of plus gametes. Unlike metazoan propeptides, modeling studies identified stable domains in proGATI. Mass spectrometric analysis of a potential prohormone convertase and the amidated proGATI-derived products found in cilia and mating ectosomes link endoproteolytic cleavage to ectosome entry. Extensive posttranslational modification of proGATI confers stability to its amidated product. Analysis of this pathway affords insight into the evolution of peptidergic signaling; this will facilitate studies of the secretory functions of metazoan cilia.


Assuntos
Micropartículas Derivadas de Células , Chlamydomonas reinhardtii , Cílios , Peptídeos , Animais , Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Peptídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(30): 17820-17831, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661174

RESUMO

The discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is peptidylglycine α-amidating monooxygenase (PAM), an enzyme essential for amidated peptide biosynthesis. Mice lacking cardiomyocyte PAM (PamMyh6-cKO/cKO) are viable, but a gene dosage-dependent drop in atrial ANP and BNP content occurred. Ultrastructural analysis of adult PamMyh6-cKO/cKO atria revealed a 13-fold drop in the number of secretory granules. When primary cultures of Pam0-Cre-cKO/cKO atrial myocytes (no Cre recombinase, PAM floxed) were transduced with Cre-GFP lentivirus, PAM protein levels dropped, followed by a decline in ANP precursor (proANP) levels. Expression of exogenous PAM in PamMyh6-cKO/cKO atrial myocytes produced a dose-dependent rescue of proANP content; strikingly, this response did not require the monooxygenase activity of PAM. Unlike many prohormones, atrial proANP is stored intact. A threefold increase in the basal rate of proANP secretion by PamMyh6-cKO/cKO myocytes was a major contributor to its reduced levels. While proANP secretion was increased following treatment of control cultures with drugs that block the activation of Golgi-localized Arf proteins and COPI vesicle formation, proANP secretion by PamMyh6-cKO/cKO myocytes was unaffected. In cells lacking secretory granules, expression of exogenous PAM led to the accumulation of fluorescently tagged proANP in the cis-Golgi region. Our data indicate that COPI vesicle-mediated recycling of PAM from the cis-Golgi to the endoplasmic reticulum plays an essential role in the biogenesis of proANP containing atrial granules.


Assuntos
Amidina-Liases/metabolismo , Grânulos Citoplasmáticos/metabolismo , Átrios do Coração/metabolismo , Oxigenases de Função Mista/metabolismo , Vesículas Secretórias/metabolismo , Amidina-Liases/genética , Animais , Fator Natriurético Atrial/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Camundongos Knockout , Oxigenases de Função Mista/genética , Monócitos/metabolismo , Células Musculares/metabolismo , Vesículas Secretórias/ultraestrutura
3.
PLoS Biol ; 17(12): e3000566, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31809498

RESUMO

Peptide-based intercellular communication is a ubiquitous and ancient process that predates evolution of the nervous system. Cilia are essential signaling centers that both receive information from the environment and secrete bioactive extracellular vesicles (ectosomes). However, the nature of these secreted signals and their biological functions remain poorly understood. Here, we report the developmentally regulated release of the peptide amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), and the presence of peptidergic signaling machinery (including propeptide precursors, subtilisin-like prohormone convertases, amidated products, and receptors) in ciliary ectosomes from the green alga Chlamydomonas. One identified amidated PAM product serves as a chemoattractant for mating-type minus gametes but repels plus gametes. Thus, cilia provide a previously unappreciated route for the secretion of amidated signaling peptides. Our study in Chlamydomonas and the presence of PAM in mammalian cilia suggest that ciliary ectosome-mediated peptidergic signaling dates to the early eukaryotes and plays key roles in metazoan physiology.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Cílios/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Comunicação Celular/fisiologia , Chlamydomonas/metabolismo , Clorófitas/metabolismo , Cílios/fisiologia , Peptídeos/metabolismo , Transdução de Sinais/fisiologia
4.
Proc Natl Acad Sci U S A ; 116(40): 20169-20179, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31455734

RESUMO

Despite accumulating evidence demonstrating the essential roles played by neuropeptides, it has proven challenging to use this information to develop therapeutic strategies. Peptidergic signaling can involve juxtacrine, paracrine, endocrine, and neuronal signaling, making it difficult to define physiologically important pathways. One of the final steps in the biosynthesis of many neuropeptides requires a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), and lack of amidation renders most of these peptides biologically inert. PAM, an ancient integral membrane enzyme that traverses the biosynthetic and endocytic pathways, also affects cytoskeletal organization and gene expression. While mice, zebrafish, and flies lacking Pam (PamKO/KO ) are not viable, we reasoned that cell type-specific elimination of Pam expression would generate mice that could be screened for physiologically important and tissue-specific deficits. Conditional PamcKO/cKO mice, with loxP sites flanking the 2 exons deleted in the global PamKO/KO mouse, were indistinguishable from wild-type mice. Eliminating Pam expression in excitatory forebrain neurons reduced anxiety-like behavior, increased locomotor responsiveness to cocaine, and improved thermoregulation in the cold. A number of amidated peptides play essential roles in each of these behaviors. Although atrial natriuretic peptide (ANP) is not amidated, Pam expression in the atrium exceeds levels in any other tissue. Eliminating Pam expression in cardiomyocytes increased anxiety-like behavior and improved thermoregulation. Atrial and serum levels of ANP fell sharply in PAM myosin heavy chain 6 conditional knockout mice, and RNA sequencing analysis identified changes in gene expression in pathways related to cardiac function. Use of this screening platform should facilitate the development of therapeutic approaches targeted to peptidergic pathways.


Assuntos
Peptídeos/metabolismo , Transdução de Sinais , Animais , Pressão Sanguínea , Regulação da Temperatura Corporal/genética , Regulação da Expressão Gênica , Hipocampo/fisiologia , Locomoção , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos/genética , Fenótipo
5.
J Cell Physiol ; 236(11): 7745-7758, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34061983

RESUMO

The biosynthesis of many of the peptides involved in homeostatic control requires peptidylglycine α-amidating monooxygenase (PAM), an ancient, highly conserved copper- and ascorbate-dependent enzyme. Using the production of amidated chromogranin A to monitor PAM function in tumor cells, physiologically relevant levels of hypoxia were shown to inhibit this monooxygenase. The ability of primary pituitary cells exposed to hypoxic conditions for 4 h to produce amidated chromogranin A was similarly inhibited. The affinity of the purified monooxygenase for oxygen (Km = 99 ± 19 µM) was consistent with this result. The ability of PAM to alter secretory pathway behavior under normoxic conditions required its monooxygenase activity. Under normoxic conditions, hypoxia-inducible factor 1a levels in dense cultures of corticotrope tumor cells expressing high levels of PAM exceeded those in control cells; expression of inactive monooxygenase did not have this effect. The effects of hypoxia on levels of two PAM-regulated genes (activating transcription factor 3 [Atf3] and FK506 binding protein 2 [Fkbp2]) differed in cells expressing high versus low levels of PAM. Putative hypoxia response elements occur in both human and mouse PAM, and hPAM has consistently been identified as one of the genes upregulated in response to hypoxia. Expression of PAM is also known to alter gene expression. A quarter of the genes consistently upregulated in response to hypoxia were downregulated following increased expression of PAM. Taken together, our data suggest roles for PAM and amidated peptide secretion in the coordination of tissue-specific responses to hypoxia.


Assuntos
Cromogranina A/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Adeno-Hipófise/enzimologia , Neoplasias Hipofisárias/enzimologia , Hipóxia Tumoral , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Amidina-Liases/genética , Amidina-Liases/metabolismo , Animais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/genética , Adeno-Hipófise/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Ratos , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
6.
Diabetologia ; 63(5): 1090, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172312

RESUMO

Unfortunately, the human islet checklist was omitted from the electronic supplementary material (ESM) linked to this paper.

7.
Diabetologia ; 63(3): 561-576, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984442

RESUMO

AIMS/HYPOTHESIS: Peptide hormones are first synthesised as larger, inactive precursors that are converted to their active forms by endopeptidase cleavage and post-translational modifications, such as amidation. Recent, large-scale genome-wide studies have suggested that two coding variants of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), are associated with impaired insulin secretion and increased type 2 diabetes risk. We aimed to elucidate the role of PAM in modulating beta cell peptide amidation, beta cell function and the development of diabetes. METHODS: PAM transcript and protein levels were analysed in mouse islets following induction of endoplasmic reticulum (ER) or cytokine stress, and PAM expression patterns were examined in human islets. To study whether haploinsufficiency of PAM accelerates the development of diabetes, Pam+/- and Pam+/+ mice were fed a low-fat diet (LFD) or high-fat diet (HFD) and glucose homeostasis was assessed. Since aggregates of the PAM substrate human islet amyloid polypeptide (hIAPP) lead to islet inflammation and beta cell failure, we also investigated whether PAM haploinsufficiency accelerated hIAPP-induced diabetes and islet amyloid formation in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. RESULTS: Immunostaining revealed high expression of PAM in alpha, beta and delta cells in human pancreatic islets. Pam mRNA and PAM protein expression were reduced in mouse islets following administration of an HFD, and in isolated islets following induction of ER stress with thapsigargin, or cytokine stress with IL-1ß, IFN-γ and TFN-α. Despite Pam+/- only having 50% PAM expression and enzyme activity as compared with Pam+/+ mice, glucose tolerance and body mass composition were comparable in the two models. After 24 weeks of HFD, both Pam+/- and Pam+/+ mice had insulin resistance and impaired glucose tolerance, but no differences in glucose tolerance, insulin sensitivity or plasma insulin levels were observed in PAM haploinsufficient mice. Islet amyloid formation and beta cell function were also similar in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. CONCLUSIONS/INTERPRETATION: Haploinsufficiency of PAM in mice does not accelerate the development of diet-induced obesity or hIAPP transgene-induced diabetes.


Assuntos
Amidina-Liases/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Oxigenases de Função Mista/genética , Amidina-Liases/fisiologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Progressão da Doença , Epistasia Genética/fisiologia , Feminino , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigenases de Função Mista/fisiologia , Ratos , Ratos Endogâmicos Lew , Fatores de Risco
8.
Cell Mol Life Sci ; 76(12): 2329-2348, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30879092

RESUMO

Many secreted peptides used for cell-cell communication require conversion of a C-terminal glycine to an amide for bioactivity. This reaction is catalyzed only by the integral membrane protein peptidylglycine α-amidating monooxygenase (PAM). PAM has been highly conserved and is found throughout the metazoa; PAM-like sequences are also present in choanoflagellates, filastereans, unicellular and colonial chlorophyte green algae, dinoflagellates and haptophytes. Recent studies have revealed that in addition to playing a key role in peptidergic signaling, PAM also regulates ciliogenesis in vertebrates, planaria and chlorophyte algae, and is required for the stability of actin-based microvilli. Here we briefly introduce the basic principles involved in ciliogenesis, the sequential reactions catalyzed by PAM and the trafficking of PAM through the secretory and endocytic pathways. We then discuss the multi-faceted roles this enzyme plays in the formation and maintenance of cytoskeleton-based cellular protrusions and propose models for how PAM protein and amidating activity might contribute to ciliogenesis. Finally, we consider why some ciliated organisms lack PAM, and discuss the potential ramifications of ciliary localized PAM for the endocrine features commonly observed in patients with ciliopathies.


Assuntos
Chlamydomonas/enzimologia , Cílios/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Actinas/metabolismo , Chlamydomonas/citologia , Chlamydomonas/metabolismo , Chlamydomonas/ultraestrutura , Cílios/ultraestrutura , Oxigenases de Função Mista/análise , Modelos Moleculares , Complexos Multienzimáticos/análise , Proteínas de Plantas/análise , Biossíntese de Proteínas , Transporte Proteico , Transdução de Sinais
9.
J Cell Physiol ; 234(6): 8683-8697, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317586

RESUMO

The biosynthetic and endocytic pathways of secretory cells are characterized by progressive luminal acidification, a process which is crucial for posttranslational modifications and membrane trafficking. This progressive fall in luminal pH is mainly achieved by the vacuolar-type-H+ ATPase (V-ATPase). V-ATPases are large, evolutionarily ancient rotary proton pumps that consist of a peripheral V1 complex, which hydrolyzes ATP, and an integral membrane V0 complex, which transports protons from the cytosol into the lumen. Upon sensing the desired luminal pH, V-ATPase activity is regulated by reversible dissociation of the complex into its V1 and V0 components. Molecular details of how intraluminal pH is sensed and transmitted to the cytosol are not fully understood. Peptidylglycine α-amidating mono-oxygenase (PAM; EC 1.14.17.3), a secretory pathway membrane enzyme which shares similar topology with two V-ATPase accessory proteins (Ac45 and prorenin receptor), has a pH-sensitive luminal linker region. Immunofluorescence and sucrose gradient analysis of peptidergic cells (AtT-20) identified distinct subcellular compartments exhibiting spatial co-occurrence of PAM and V-ATPase. In vitro binding assays demonstrated direct binding of the cytosolic domain of PAM to V1H. Blue native PAGE identified heterogeneous high-molecular weight complexes of PAM and V-ATPase. A PAM-1 mutant (PAM-1/H3A) with altered pH sensitivity had diminished ability to form high-molecular weight complexes. In addition, V-ATPase assembly status was altered in PAM-1/H3A expressing cells. Our analysis of the secretory and endocytic pathways of peptidergic cells supports the hypothesis that PAM serves as a luminal pH-sensor, regulating V-ATPase action by altering its assembly status.


Assuntos
Endocitose , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Células Neuroendócrinas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Linhagem Celular , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/genética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Via Secretória , Transdução de Sinais , Relação Estrutura-Atividade , ATPases Vacuolares Próton-Translocadoras/genética
10.
Hum Mol Genet ; 26(23): 4728-4740, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973398

RESUMO

Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Bases de Dados de Ácidos Nucleicos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/enzimologia , Domínios Proteicos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
11.
J Cell Sci ; 129(5): 943-56, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26787743

RESUMO

Ciliary axonemes and basal bodies were present in the last eukaryotic common ancestor and play crucial roles in sensing and responding to environmental cues. Peptidergic signaling, generally considered a metazoan innovation, is essential for organismal development and homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) is crucial for the last step of bioactive peptide biosynthesis. However, identification of a complete PAM-like gene in green algal genomes suggests ancient evolutionary roots for bioactive peptide signaling. We demonstrate that the Chlamydomonas reinhardtii PAM gene encodes an active peptide-amidating enzyme (CrPAM) that shares key structural and functional features with the mammalian enzyme, indicating that components of the peptide biosynthetic pathway predate multicellularity. In addition to its secretory pathway localization, CrPAM localizes to cilia and tightly associates with the axonemal superstructure, revealing a new axonemal enzyme activity. This localization pattern is conserved in mammals, with PAM present in both motile and immotile sensory cilia. The conserved ciliary localization of PAM adds to the known signaling capabilities of the eukaryotic cilium and provides a potential mechanistic link between peptidergic signaling and endocrine abnormalities commonly observed in ciliopathies.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Cílios/enzimologia , Transferases de Grupos Nitrogenados/genética , Proteínas de Plantas/genética , Animais , Chlamydomonas reinhardtii/ultraestrutura , Evolução Molecular , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Transferases de Grupos Nitrogenados/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico
12.
J Biol Chem ; 291(18): 9835-50, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26961877

RESUMO

Peptidylglycine α-amidating monooxygenase (PAM) (EC 1.14.17.3) catalyzes peptide amidation, a crucial post-translational modification, through the sequential actions of its monooxygenase (peptidylglycine α-hydroxylating monooxygenase) and lyase (peptidyl-α-hydroxyglycine α-amidating lyase (PAL)) domains. Alternative splicing generates two different regions that connect the protease-resistant catalytic domains. Inclusion of exon 16 introduces a pair of Lys residues, providing a site for controlled endoproteolytic cleavage of PAM and the separation of soluble peptidylglycine α-hydroxylating monooxygenase from membrane-associated PAL. Exon 16 also includes two O-glycosylation sites. PAM-1 lacking both glycosylation sites (PAM-1/OSX; where OSX is O-glycan-depleted mutant of PAM-1) was stably expressed in AtT-20 corticotrope tumor cells. In PAM-1/OSX, a cleavage site for furin-like convertases was exposed, generating a shorter form of membrane-associated PAL. The endocytic trafficking of PAM-1/OSX differed dramatically from that of PAM-1. A soluble fragment of the cytosolic domain of PAM-1 was produced in the endocytic pathway and entered the nucleus; very little soluble fragment of the cytosolic domain was produced from PAM-1/OSX. Internalized PAM-1/OSX was rapidly degraded; unlike PAM-1, very little internalized PAM-1/OSX was detected in multivesicular bodies. Blue native PAGE analysis identified high molecular weight complexes containing PAM-1; the ability of PAM-1/OSX to form similar complexes was markedly diminished. By promoting the formation of high molecular weight complexes, O-glycans may facilitate the recycling of PAM-1 through the endocytic compartment.


Assuntos
Membrana Celular/enzimologia , Endocitose/fisiologia , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Vesículas Secretórias/enzimologia , Animais , Transporte Biológico Ativo/fisiologia , Linhagem Celular Tumoral , Membrana Celular/genética , Glicosilação , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/genética , Ratos , Vesículas Secretórias/genética
13.
J Neurochem ; 140(6): 889-902, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27465683

RESUMO

Kalirin (Kal), a dual Rho GDP/GTP exchange factor (GEF), plays essential roles within and outside the nervous system. Tissue-specific, developmentally regulated alternative splicing generates isoforms with one (Kal7) or two (Kal9, Kal12) GEF domains along with a kinase (Kal12) domain; while Kal9 and Kal12 are crucial for neurite outgrowth, Kal7 plays important roles in spine maintenance and synaptic plasticity. Tissue-specific usage of alternate Kalrn promoters (A, B, C, D) places four different peptides before the Sec14 domain. cSec14, with an amphipathic helix encoded by the C-promoter (Kal-C-helix), is the only variant known to interact with phosphoinositides. We sought to elucidate the biological significance of Kalirin promoter usage and lipid binding. While Ex1B expression was predominant early in development, Ex1C expression increased when synaptogenesis occurred. Kal-C-helix-containing Kal7 (cKal7) was enriched at the postsynaptic density, present in the microsomal fraction and absent from cytosol; no significant amount of cKal9 or cKal12 could be identified in mouse brain. Similarly, in primary hippocampal neurons, endogenous cKalirin colocalized with postsynaptic density 95 in dendritic spines, juxtaposed to Vglut1-positive puncta. When expressed in young neurons, bSec14-EGFP was diffusely distributed, while cSec14-EGFP localized to internal puncta. Transfected bKal7-EGFP and cKal7-EGFP localized to dendritic spines and increased spine density in more mature cultured neurons. Although promoter usage did not alter the Rac-GEF activity of Kal7, the synaptic puncta formed by cKal7-EGFP were smaller than those formed by bKal7-EGFP. Molecular modeling predicted a role for Kal-C-helix residue Arg15 in the interaction of cSec14 with phosphoinositides. Consistent with this prediction, mutation of Arg15 to Gln altered the localization of cSec14-EGFP and cKal7-EGFP. These data suggest that phosphoinositide-dependent interactions unique to cKal7 contribute to protein localization and function. Cover Image for this issue: doi. 10.1111/jnc.13791.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Regiões Promotoras Genéticas/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Gravidez , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/genética
14.
Hum Mol Genet ; 24(25): 7265-85, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26464483

RESUMO

Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.


Assuntos
Corpo Estriado/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doença de Huntington/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Eletrofisiologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Confocal , Transmissão Sináptica/genética
15.
BMC Neurosci ; 18(1): 45, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535798

RESUMO

BACKGROUND: Mice lacking Kalirin-7 (Kal7KO), a Rho GDP/GTP exchange factor, self-administer cocaine at a higher rate than wildtype mice, and show an exaggerated locomotor response to experimenter-administered cocaine. Kal7, which localizes to post-synaptic densities at glutamatergic synapses, interacts directly with the GluN2B subunit of the N-methyl-D-aspartate (NMDA; GluN) receptor. Consistent with these observations, Kal7 plays an essential role in NMDA receptor dependent long term potentiation and depression, and glutamatergic transmission plays a key role in the response to chronic cocaine. A number of genetic studies have implicated altered Kalirin expression in schizophrenia and other disorders such as Alzheimer's Disease. RESULTS: A comparison of the effects of experimenter-administered cocaine on mice lacking all Kalirin isoforms to its effects on mice lacking only Kalirin-7 identified Kal7 as the key isoform whose deletion produces exaggerated locomotor responses to cocaine. Pretreatment of Kal7KO mice with a low dose of ifenprodil, a selective GluN2B antagonist, eliminated their enhanced locomotor response to cocaine, revealing an important role for GluN2B in this behavior. Selective knockout of Kalirin in dopamine transporter expressing neurons produced a transient enhancement of cocaine-induced locomotion, while knockout of Kalirin in Drd1a- or Drd2-dopamine receptor expressing neurons was without effect. As observed in Kalirin global knockout mice, eliminating Kalirin expression in Drd2-expressing neurons increased exploratory behavior in the elevated zero maze, an effect eliminated by pretreatment with ifenprodil. CONCLUSIONS: The cocaine-sensitive neuronal pathways which are most sensitive to altered Kalirin function may be the pathways most dependent on GluN2B and Drd2.


Assuntos
Comportamento Animal/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Locomoção/fisiologia , Receptores Dopaminérgicos/metabolismo , Animais , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/metabolismo
16.
J Biol Chem ; 290(21): 13541-55, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25861993

RESUMO

Previous studies revealed an essential role for the lipid-binding Sec14 domain of kalirin (KalSec14), but its mechanism of action is not well understood. Because alternative promoter usage appends unique N-terminal peptides to the KalSec14 domain, we used biophysical, biochemical, and cell biological approaches to examine the two major products, bKalSec14 and cKalSec14. Promoter B encodes a charged, unstructured peptide, whereas promoter C encodes an amphipathic helix (Kal-C-helix). Both bKalSec14 and cKalSec14 interacted with lipids in PIP strip and liposome flotation assays, with significantly greater binding by cKalSec14 in both assays. Disruption of the hydrophobic face of the Kal-C-helix in cKalSec14KKED eliminated its increased liposome binding. Although cKalSec14 showed significantly reduced binding to liposomes lacking phosphatidylinositol phosphates or cholesterol, liposome binding by bKalSec14 and cKalSec14KKED was not affected. When expressed in AtT-20 cells, bKalSec14-GFP was diffusely localized, whereas cKalSec14-GFP localized to the trans-Golgi network and secretory granules. The amphipathic C-helix was sufficient for this localization. When AtT-20 cells were treated with a cell-permeant derivative of the Kal-C-helix (Kal-C-helix-Arg9), we observed increased secretion of a product stored in mature secretory granules, with no effect on basal secretion; a cell-permeant control peptide (Kal-C-helixKKED-Arg9) did not have this effect. Through its ability to control expression of a novel, phosphoinositide-binding amphipathic helix, Kalrn promoter usage is expected to affect function.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos Penetradores de Células/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipoproteínas/metabolismo , Fosfatidilinositóis/metabolismo , Neoplasias Hipofisárias/metabolismo , Regiões Promotoras Genéticas/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Peptídeos Penetradores de Células/química , Dicroísmo Circular , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina/genética , Processamento de Imagem Assistida por Computador , Lipoproteínas/genética , Lipossomos/metabolismo , Camundongos , Dados de Sequência Molecular , Neoplasias Hipofisárias/genética , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Transativadores/genética , Células Tumorais Cultivadas , Rede trans-Golgi/metabolismo
17.
J Biol Chem ; 290(35): 21264-79, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170456

RESUMO

The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its µ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Cobre/metabolismo , Endocitose , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Complexo 1 de Proteínas Adaptadoras/análise , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/análise , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Células Cultivadas , ATPases Transportadoras de Cobre , Células HeLa , Humanos , Camundongos , Oxigenases de Função Mista/análise , Complexos Multienzimáticos/análise , Hipófise/citologia , Hipófise/metabolismo , Transporte Proteico , Ratos
18.
J Biol Chem ; 290(41): 24891-901, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26296884

RESUMO

Interactions between biological pathways and molecular oxygen require robust mechanisms for detecting and responding to changes in cellular oxygen availability, to support oxygen homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) catalyzes a two-step reaction resulting in the C-terminal amidation of peptides, a process important for their stability and biological activity. Here we show that in human, mouse, and insect cells, peptide amidation is exquisitely sensitive to hypoxia. Different amidation events on chromogranin A, and on peptides processed from proopiomelanocortin, manifest similar striking sensitivity to hypoxia in a range of neuroendocrine cells, being progressively inhibited from mild (7% O2) to severe (1% O2) hypoxia. In developing Drosophila melanogaster larvae, FMRF amidation in thoracic ventral (Tv) neurons is strikingly suppressed by hypoxia. Our findings have thus defined a novel monooxygenase-based oxygen sensing mechanism that has the capacity to signal changes in oxygen availability to peptidergic pathways.


Assuntos
Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Células Neuroendócrinas/metabolismo , Oxigênio/metabolismo , Amidas/metabolismo , Sequência de Aminoácidos , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Cromogranina A/farmacologia , Drosophila melanogaster/enzimologia , Humanos , Camundongos , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Células Neuroendócrinas/efeitos dos fármacos
19.
Cereb Cortex ; 25(10): 3487-501, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146373

RESUMO

Proteins derived from the Kalrn gene, encoding 2 Rho guanine nucleotide exchange factor (GEF) domains, affect dendritic and axonal morphogenesis. The roles of endogenous Kalirin-9 (Kal9) and Kalirin-12 (Kal12), the Kalrn isoforms expressed before synaptogenesis, have not been studied in neurite growth and maturation during early development. The Caenorhabditis elegans and Drosophila melanogaster orthologues of Kalrn encode proteins equivalent to Kal9 but, lacking a kinase domain, neither organism expresses a protein equivalent to Kal12. Both in vivo and in vitro analyses of cortical neurons from total Kalrn knockout mice, lacking all major Kalirin isoforms, revealed a simplified dendritic arbor and reduced neurite length. Using isoform-specific shRNAs to reduce Kal9 or Kal12 expression in hippocampal cultures resulted in stunted dendritic outgrowth and branching in vitro, without affecting axonal polarity. Exposing hippocampal cultures to inhibitors of the first GEF domain of Kalirin (ITX3, Z62954982) blunted neurite outgrowth and branching, confirming its essential role, without altering the morphology of neurons not expressing Kalrn. In addition, exogenous expression of the active kinase domain unique to Kal12 increased neurite number and length, whereas that of the inactive kinase domain decreased neurite growth. Our results demonstrate that both endogenous Kal9 and endogenous Kal12 contribute to dendritic maturation in early development.


Assuntos
Córtex Cerebral/embriologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hipocampo/embriologia , Neuritos/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
J Biol Chem ; 289(18): 12404-20, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24627494

RESUMO

Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.


Assuntos
Histidina/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Domínio Catalítico/genética , Linhagem Celular Tumoral , Dicroísmo Circular , Endocitose/genética , Células HEK293 , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Eletrônica , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Mutação , Pró-Opiomelanocortina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/genética , Proteólise , Ratos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Homologia de Sequência de Aminoácidos , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA