Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2402543121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959031

RESUMO

The outer membrane (OM) of gram-negative bacteria serves as a vital organelle that is densely populated with OM proteins (OMPs) and plays pivotal roles in cellular functions and virulence. The assembly and insertion of these OMPs into the OM represent a fundamental process requiring specialized molecular chaperones. One example is the translocation and assembly module (TAM), which functions as a transenvelope chaperone promoting the folding of specific autotransporters, adhesins, and secretion systems. The catalytic unit of TAM, TamA, comprises a catalytic ß-barrel domain anchored within the OM and three periplasmic polypeptide-transport-associated (POTRA) domains that recruit the TamB subunit. The latter acts as a periplasmic ladder that facilitates the transport of unfolded OMPs across the periplasm. In addition to their role in recruiting the auxiliary protein TamB, our data demonstrate that the POTRA domains mediate interactions with the inner surface of the OM, ultimately modulating the membrane properties. Through the integration of X-ray crystallography, molecular dynamic simulations, and biomolecular interaction methodologies, we located the membrane-binding site on the first and second POTRA domains. Our data highlight a binding preference for phosphatidylglycerol, a minor lipid constituent present in the OM, which has been previously reported to facilitate OMP assembly. In the context of the densely OMP-populated membrane, this association may serve as a mechanism to secure lipid accessibility for nascent OMPs through steric interactions with existing OMPs, in addition to creating favorable conditions for OMP biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Domínios Proteicos , Membrana Externa Bacteriana/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Dobramento de Proteína , Periplasma/metabolismo , Modelos Moleculares
2.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987713

RESUMO

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Cricetulus , SARS-CoV-2/metabolismo , Células CHO , Anticorpos Monoclonais , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Proteínas Recombinantes/metabolismo , Vacinas de Subunidades Antigênicas/genética
3.
Proc Natl Acad Sci U S A ; 116(28): 14164-14173, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239348

RESUMO

The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/química , Malária/genética , Plasmodium falciparum/química , Conformação Proteica , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/ultraestrutura , Humanos , Cinética , Malária/parasitologia , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/ultraestrutura , Ligação Proteica
4.
J Biol Chem ; 291(18): 9566-80, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26933036

RESUMO

The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca(2+) Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca(2+) indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca(2+) signaling in the model apicomplexan Toxoplasma gondii In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca(2+) We define the pool of Ca(2+) regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca(2+) signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca(2+) The enhancers identified are capable of releasing intracellular Ca(2+) stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum Inhibition of Ca(2+)-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca(2+) stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca(2+), underscoring the importance of these pathways and the therapeutic potential of their inhibition.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas Quinases Dependentes de GMP Cíclico , Retículo Endoplasmático , Proteínas de Protozoários , Purinonas/farmacologia , Toxoplasma , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
5.
EMBO J ; 30(5): 931-44, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21278708

RESUMO

The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH∼5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Antiporters/química , Carboxiliases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Estresse Fisiológico , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/metabolismo , Antiporters/metabolismo , Carboxiliases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica
6.
J Biol Chem ; 288(2): 1022-31, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23192353

RESUMO

The ATP-dependent caseinolytic protease, ClpP, is highly conserved in bacteria and in the organelles of different organisms. In cyanobacteria, plant plastids, and the apicoplast of the genus Plasmodium, a noncatalytic paralog of ClpP, termed ClpR, has been identified. ClpRs are found to form heterocomplexes with ClpP resulting in a ClpRP tetradecameric cylinder having less than 14 catalytic triads. The exact role of ClpR in such a complex remains enigmatic. Here we describe the x-ray crystal structure of ClpR protein heptamer from Plasmodium falciparum (PfClpR). This is the first structure of a ClpR protein. The structure shows that the PfClpR monomer adopts a fold similar to that of ClpP, but has a unique motif, which we named the R-motif, forming a ß turn located near the inactive catalytic triad in a three-dimensional space. The PfClpR heptamer exhibits a more open and flat ring than a ClpP heptamer. PfClpR was localized in the P. falciparum apicoplast as is the case of PfClpP. However, biochemical and structural data suggest that, contrary to what has been observed in other organisms, PfClpP and PfClpR do not form a stable heterocomplex in the apicoplast of P. falciparum.


Assuntos
Caseínas/metabolismo , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Técnica Indireta de Fluorescência para Anticorpo , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Organelas/enzimologia , Peptídeo Hidrolases/química , Conformação Proteica , Proteólise , Homologia de Sequência de Aminoácidos
7.
mBio ; 15(3): e0295223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376163

RESUMO

Helicobacter pylori is a bacterium that exhibits strict host restriction to humans and non-human primates, and the bacterium is widely acknowledged as a significant etiological factor in the development of chronic gastritis, peptic ulcers, and gastric cancers. The pathogenic potential of this organism lies in its adeptness at colonizing the gastric mucosa, which is facilitated by a diverse repertoire of virulence factors, including adhesins that promote the attachment of the bacteria to the gastric epithelium. Among these adhesins, HpaA stands out due to its conserved nature and pivotal role in establishing H. pylori colonization. Moreover, this lipoprotein holds promise as an antigen for the development of effective H. pylori vaccines, thus attracting considerable attention for in-depth investigations into its molecular function and identification of binding determinants. Here, we present the elucidation of the crystallographic structure of HpaA at 2.9 Å resolution. The folding adopts an elongated protein shape, which is distinctive to the Helicobacteraceae family, and features an apical domain extension that plays a critical role in the cell-adhesion activity on gastric epithelial cells. Our study also demonstrates the ability of HpaA to induce TNF-α expression in macrophages, highlighting a novel role as an immunoregulatory effector promoting the pro-inflammatory response in vitro. These findings not only contribute to a deeper comprehension of the multifaceted role of HpaA in H. pylori pathogenesis but also establish a fundamental basis for the design and development of structure-based derivatives, aimed at enhancing the efficacy of H. pylori vaccines. IMPORTANCE: Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and gastric cancers. The bacterium adheres to the lining of the stomach using proteins called adhesins. One of these proteins, HpaA, is particularly important for H. pylori colonization and is considered a promising vaccine candidate against H. pylori infections. In this work, we determined the atomic structure of HpaA, identifying a characteristic protein fold to the Helicobacter family and delineating specific amino acids that are crucial to support the attachment to the gastric cells. Additionally, we discovered that HpaA can trigger the production of TNF-α, a proinflammatory molecule, in macrophages. These findings provide valuable insights into how H. pylori causes disease and suggest that HpaA has a dual role in both attachment and immune activation. This knowledge could contribute to the development of improved vaccine strategies for preventing H. pylori infections.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Úlcera Péptica , Neoplasias Gástricas , Animais , Humanos , Epitopos , Adesão Celular , Fator de Necrose Tumoral alfa , Adesinas Bacterianas , Vacinas Bacterianas , Infecções por Helicobacter/microbiologia
8.
Proc Natl Acad Sci U S A ; 107(52): 22499-504, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21148420

RESUMO

The MoxR family of AAA+ ATPases is widespread throughout bacteria and archaea but remains poorly characterized. We recently found that the Escherichia coli MoxR protein, RavA (Regulatory ATPase variant A), tightly interacts with the inducible lysine decarboxylase, LdcI/CadA, to form a unique cage-like structure. Here, we present the X-ray structure of RavA and show that the αßα and all-α subdomains in the RavA AAA+ module are arranged as in magnesium chelatases rather than as in classical AAA+ proteins. RavA structure also contains a discontinuous triple-helical domain as well as a ß-barrel-like domain forming a unique fold, which we termed the LARA domain. The LARA domain was found to mediate the interaction between RavA and LdcI. The RavA structure provides insights into how five RavA hexamers interact with two LdcI decamers to form the RavA-LdcI cage-like structure.


Assuntos
Adenosina Trifosfatases/química , Carboxiliases/química , Proteínas de Escherichia coli/química , Estrutura Terciária de Proteína , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Calorimetria , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
9.
Sci Rep ; 13(1): 16498, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779126

RESUMO

SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacinas contra COVID-19/genética , Temperatura , Cricetulus , Antígenos , Mutação , Concentração de Íons de Hidrogênio , Anticorpos Neutralizantes
10.
J Med Chem ; 65(19): 13198-13215, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36126059

RESUMO

DNA polymerase theta (Polθ) is an attractive synthetic lethal target for drug discovery, predicted to be efficacious against breast and ovarian cancers harboring BRCA-mutant alleles. Here, we describe our hit-to-lead efforts in search of a selective inhibitor of human Polθ (encoded by POLQ). A high-throughput screening campaign of 350,000 compounds identified an 11 micromolar hit, giving rise to the N2-substituted fused pyrazolo series, which was validated by biophysical methods. Structure-based drug design efforts along with optimization of cellular potency and ADME ultimately led to the identification of RP-6685: a potent, selective, and orally bioavailable Polθ inhibitor that showed in vivo efficacy in an HCT116 BRCA2-/- mouse tumor xenograft model.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias Ovarianas , Animais , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Feminino , Humanos , Camundongos
11.
Proc Natl Acad Sci U S A ; 105(34): 12629-34, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18723681

RESUMO

A homology model of NADPH:protochlorophyllide (Pchlide) oxidoreductase A (POR; E.C. 1.3.33.1) of barley is developed and verified by site-directed mutagenesis. PORA is considered a globular protein consisting of nine alpha-helices and seven beta-strands. The model predicts the presence of two functionally distinctive Pchlide binding sites where the pigment is coordinated by cysteine residues. The pigment bound to the first, high-affinity Pchlide binding site is used for the formation of the photoactive state of the enzyme. The pigment bound to the second, low-affinity Pchlide binding site is involved in the PORA:PORB interaction, allowing for resonance energy transfer between the neighboring PORs in the complex. In the in vitro reconstituted light-harvesting POR:Pchlide complex (LHPP), light absorbed by PORA-bound Pchlide b is transferred to PORB-bound Pchlide a. That induces the conversion of Pchlide a to chlorophyllide (Chlide) a. This energy transfer eliminates the possibility of Pchlide b photoreduction and prevents that excited triplet states of either Pchlides a or b accumulate and provoke singlet oxygen production. Together, our results provide a photoprotective role of PORA during greening.


Assuntos
Hordeum/enzimologia , NADH NADPH Oxirredutases/fisiologia , Sítios de Ligação , Transferência de Energia/fisiologia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Mutagênese Sítio-Dirigida , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Fotoquímica , Proteínas de Plantas/fisiologia , Protoclorifilida/metabolismo , Homologia Estrutural de Proteína
12.
J Virol ; 82(7): 3192-203, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18216088

RESUMO

There are more than 100 known adenovirus (AdV) serotypes, including 50 human serotypes. Because AdV-induced disease is relatively species specific, vectors derived from nonhuman serotypes may have wider clinical potential based, in part, on the lack of ubiquitous memory immunity. Whereas a few of the human serotype capsids have been studied at the structural level, none of the nonhuman serotypes has been analyzed. The basis laid by the analysis of human AdV (hAdV) has allowed us to determine and compare the three-dimensional structure of the capsid of canine serotype 2 (CAV-2) to that of hAdV serotype 5 (hAdV-5). We show that CAV-2 capsid has a smoother structure than the human serotypes. Many of the external loops found in the hAdV-5 penton base and the hexon, against which the antibody response is directed, are shorter or absent in CAV-2. On the other hand, the CAV-2 fiber appears to be more complex, with two bends in the shaft. An interesting difference between the human and canine viruses is that the C-terminal part of protein IX is in a different position, making an antenna sticking out of the CAV-2 capsid. The comparison between the two viruses allows the identification of sites that should be easy to modify on the CAV-2 capsid for altering tissue tropism or other biological activities.


Assuntos
Adenovirus Caninos/química , Adenovirus Caninos/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Estrutura Terciária de Proteína
13.
Nat Biotechnol ; 36(1): 103-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176613

RESUMO

Bacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli. After extraction with non-denaturing detergents, we affinity-purified 785 endogenously tagged CEPs and identified stably associated polypeptides by precision mass spectrometry. The resulting high-quality physical interaction network, comprising 77% of targeted CEPs, revealed many previously uncharacterized heteromeric complexes. We found that the secretion of autotransporters requires translocation and the assembly module TamB to nucleate proper folding from periplasm to cell surface through a cooperative mechanism involving the ß-barrel assembly machinery. We also establish that an ABC transporter of unknown function, YadH, together with the Mla system preserves outer membrane lipid asymmetry. This E. coli CEP 'interactome' provides insights into the functional landscape governing CE systems essential to bacterial growth, metabolism and drug resistance.


Assuntos
Membrana Celular/genética , Escherichia coli/genética , Complexos Multiproteicos/genética , Proteômica , Membrana Celular/química , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/classificação
14.
J Med Chem ; 60(24): 9976-9989, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28933846

RESUMO

Calcium dependent protein kinase 1 (CDPK1) is an essential enzyme in the opportunistic pathogen Toxoplasma gondii. CDPK1 controls multiple processes that are critical to the intracellular replicative cycle of T. gondii including secretion of adhesins, motility, invasion, and egress. Remarkably, CDPK1 contains a small glycine gatekeeper residue in the ATP binding pocket making it sensitive to ATP-competitive inhibitors with bulky substituents that complement this expanded binding pocket. Here we explored structure-activity relationships of a series of pyrazolopyrimidine inhibitors of CDPK1 with the goal of increasing selectivity over host enzymes, improving antiparasite potency, and improving metabolic stability. The resulting lead compound 24 exhibited excellent enzyme inhibition and selectivity for CDPK1 and potently inhibited parasite growth in vitro. Compound 24 was also effective at treating acute toxoplasmosis in the mouse, reducing dissemination to the central nervous system, and decreasing reactivation of chronic infection in severely immunocompromised mice. These findings provide proof of concept for the development of small molecule inhibitors of CDPK1 for treatment of CNS toxoplasmosis.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Toxoplasmose Cerebral/tratamento farmacológico , Animais , Antiprotozoários/farmacocinética , Feminino , Humanos , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Pirazóis/química , Pirimidinas/química , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Cerebral/prevenção & controle
15.
Nat Commun ; 8(1): 430, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874661

RESUMO

To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC50 of 160 pM in a PfPKG kinase assay and inhibits P. falciparum blood stage proliferation in vitro with an EC50 of 2.1 nM. Oral dosing renders blood stage parasitaemia undetectable in vivo using a P. falciparum SCID mouse model. The series targets both merozoite egress and erythrocyte invasion, but crucially, also blocks transmission of mature P. falciparum gametocytes to Anopheles stephensi mosquitoes. A co-crystal structure of PvPKG bound to ML10, reveals intimate molecular contacts that explain the high levels of potency and selectivity we have measured. The properties of this series warrant consideration for further development to produce an antimalarial drug.Protein kinases are promising drug targets for treatment of malaria. Here, starting with a medicinal chemistry approach, Baker et al. generate an imidazopyridine that selectively targets Plasmodium falciparum PKG, inhibits blood stage parasite growth in vitro and in mice and blocks transmission to mosquitoes.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Imidazóis/uso terapêutico , Malária/enzimologia , Malária/transmissão , Piridinas/uso terapêutico , Animais , Linhagem Celular , Cristalografia por Raios X , Culicidae , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Camundongos Endogâmicos BALB C , Modelos Moleculares , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Resultado do Tratamento
16.
PLoS One ; 11(3): e0149996, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934697

RESUMO

In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds' mechanisms of action--i.e., the specific molecular targets by which they kill the parasite--would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children's Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 µM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas Quinases/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo
17.
Trends Pharmacol Sci ; 36(7): 452-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002073

RESUMO

Apicomplexan parasites cause some of the most severe human diseases, including malaria (caused by Plasmodium), toxoplasmosis, and cryptosporidiosis. Treatments are limited by the lack of effective drugs and development of resistance to available agents. By exploiting novel features of protein kinases in these parasites, it may be possible to develop new treatments. We summarize here recent advances in identifying small molecule inhibitors against a novel family of plant-like, calcium-dependent kinases that are uniquely expanded in apicomplexan parasites. Analysis of the 3D structure, activation mechanism, and sensitivity to small molecules had identified several attractive chemical scaffolds that are potent and selective inhibitors of these parasite kinases. Further optimization of these leads may yield promising new drugs for treatment of these parasitic infections.


Assuntos
Apicomplexa/enzimologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Humanos , Modelos Moleculares , Estrutura Molecular , Filogenia , Inibidores de Proteínas Quinases/química , Infecções por Protozoários/tratamento farmacológico , Relação Estrutura-Atividade
18.
Nat Commun ; 6: 7996, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26282243

RESUMO

Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Neisseria meningitidis/metabolismo , Zinco/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Proteica , Sepse/microbiologia
19.
Elife ; 3: e03653, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25097238

RESUMO

A 3.3 MDa macromolecular cage between two Escherichia coli proteins with seemingly incompatible symmetries-the hexameric AAA+ ATPase RavA and the decameric inducible lysine decarboxylase LdcI-is reconstructed by cryo-electron microscopy to 11 Å resolution. Combined with a 7.5 Å resolution reconstruction of the minimal complex between LdcI and the LdcI-binding domain of RavA, and the previously solved crystal structures of the individual components, this work enables to build a reliable pseudoatomic model of this unusual architecture and to identify conformational rearrangements and specific elements essential for complex formation. The design of the cage created via lateral interactions between five RavA rings is unique for the diverse AAA+ ATPase superfamily.


Assuntos
Adenosina Trifosfatases/química , Carboxiliases/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Microscopia Crioeletrônica , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Nat Struct Mol Biol ; 21(8): 686-695, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997600

RESUMO

The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Neoplasias/química , Processamento de Proteína Pós-Traducional , RNA Polimerase II/química , Proteínas Repressoras/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Serina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA