Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 63(4): 468-75, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27353665

RESUMO

BACKGROUND: Toxoplasma gondii infection causes substantial morbidity and mortality in the United States, and infects approximately one-third of persons globally. Clinical manifestations vary. Seropositivity is associated with neurologic diseases and malignancies. There are few objective data concerning US incidence and distribution of toxoplasmosis. METHODS: Truven Health MarketScan Database and International Classification of Diseases, Ninth Revision (ICD-9) codes, including treatment specific to toxoplasmosis, identified patients with this disease. Spatiotemporal distribution and patterns of disease manifestation were analyzed. Comorbidities between patients and matched controls were compared. RESULTS: Between 2003 and 2012, 9260 patients had ICD-9 codes for toxoplasmosis. This database of patients with ICD-9 codes includes 15% of those in the United States, excluding patients with no or public insurance. Thus, assuming that demographics do not change incidence, the calculated total is 61 700 or 6856 patients per year. Disease was more prevalent in the South. Mean age at diagnosis was 37.5 ± 15.5 years; 2.4% were children aged 0-2 years, likely congenitally infected. Forty-one percent were male, and 73% of women were of reproductive age. Of identified patients, 38% had eye disease and 12% presented with other serious manifestations, including central nervous system and visceral organ damage. Toxoplasmosis was statistically associated with substantial comorbidities, including human immunodeficiency virus, autoimmune diseases, and neurologic diseases. CONCLUSIONS: Toxoplasmosis causes morbidity and mortality in the United States. Our analysis of private insurance records missed certain at-risk populations and revealed fewer cases of retinal disease than previously estimated, suggesting undercoding, underreporting, undertreating, or differing demographics of those with eye disease. Mandatory reporting of infection to health departments and gestational screening could improve care and facilitate detection of epidemics and, thereby, public health interventions.


Assuntos
Doenças Autoimunes/epidemiologia , Infecções por HIV/epidemiologia , Doenças do Sistema Nervoso/epidemiologia , Toxoplasmose/epidemiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Comorbidade , Feminino , Humanos , Incidência , Lactente , Classificação Internacional de Doenças , Masculino , Pessoa de Meia-Idade , Morbidade , Prevalência , Toxoplasmose/classificação , Estados Unidos/epidemiologia , Adulto Jovem
2.
Gastroenterology ; 148(7): 1417-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25747597

RESUMO

BACKGROUND & AIMS: Intraepithelial lymphocytes that express the γδ T-cell receptor (γδ IELs) limit pathogen translocation across the intestinal epithelium by unknown mechanisms. We investigated whether γδ IEL migration and interaction with epithelial cells promote mucosal barrier maintenance during enteric infection. METHODS: Salmonella typhimurium or Toxoplasma gondii were administered to knockout (KO) mice lacking either the T cell receptor δ chain (Tcrd) or CD103, or control TcrdEGFP C57BL/6 reporter mice. Intravital microscopy was used to visualize migration of green fluorescent protein (GFP)-tagged γδ T cells within the small intestinal mucosa of mice infected with DsRed-labeled S typhimurium. Mixed bone marrow chimeras were generated to assess the effects of γδ IEL migration on early pathogen invasion and chronic systemic infection. RESULTS: Morphometric analyses of intravital video microscopy data showed that γδ IELs rapidly localized to and remained near epithelial cells in direct contact with bacteria. Within 1 hour, greater numbers of T gondii or S typhimurium were present within mucosae of mice with migration-defective occludin KO γδ T cells, compared with controls. Pathogen invasion in Tcrd KO mice was quantitatively similar to that in mice with occludin-deficient γδ T cells, whereas invasion in CD103 KO mice, which have increased migration of γδ T cells into the lateral intercellular space, was reduced by 63%. Consistent with a role of γδ T-cell migration in early host defense, systemic salmonellosis developed more rapidly and with greater severity in mice with occludin-deficient γδ IELs, relative to those with wild-type or CD103 KO γδ IELs. CONCLUSIONS: In mice, intraepithelial migration to epithelial cells in contact with pathogens is essential to γδ IEL surveillance and immediate host defense. γδ IEL occludin is required for early surveillance that limits systemic disease.


Assuntos
Translocação Bacteriana , Quimiotaxia de Leucócito , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Salmonelose Animal/imunologia , Salmonella typhimurium/patogenicidade , Toxoplasmose Animal/imunologia , Animais , Antígenos CD/genética , Transplante de Medula Óssea , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/parasitologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Cadeias alfa de Integrinas/deficiência , Cadeias alfa de Integrinas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Linfócitos/metabolismo , Linfócitos/microbiologia , Linfócitos/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocludina/deficiência , Ocludina/efeitos dos fármacos , Permeabilidade , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/efeitos dos fármacos , Salmonelose Animal/genética , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Fatores de Tempo , Toxoplasmose Animal/genética , Toxoplasmose Animal/parasitologia , Quimeras de Transplante , Virulência
3.
Proc Natl Acad Sci U S A ; 109(35): 14182-7, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22891343

RESUMO

Toxoplasma gondii persistently infects over two billion people worldwide. It can cause substantial morbidity and mortality. Existing treatments have associated toxicities and hypersensitivity and do not eliminate encysted bradyzoites that recrudesce. New, improved medicines are needed. Transductive peptides carry small molecule cargos across multiple membranes to enter intracellular tachyzoites and encysted bradyzoites. They also carry cargos into retina when applied topically to eyes, and cross blood brain barrier when administered intravenously. Phosphorodiamidate morpholino oligomers (PMO) inhibit gene expression in a sequence-specific manner. Herein, effect of transductive peptide conjugated PMO (PPMO) on tachyzoite protein expression and replication in vitro and in vivo was studied. Initially, sequence-specific PPMO successfully reduced transfected T. gondii's fluorescence and luminescence. PPMO directed against T. gondii's dihydrofolate reductase (DHFR), an enzyme necessary for folate synthesis, limited tachyzoite replication. Rescue with exogenous folate demonstrated DHFR PPMO's specificity. PPMO directed against enoyl-ACP reductase (ENR), an enzyme of type II fatty acid synthesis that is structurally distinct in T. gondii from ENR in mammalian cells was investigated. PPMO directed against plant-like Apetela 2 (AP2) domain transcription factor XI-3 (AP2XI-3), not present in human cells, was characterized. ENR and AP2XI-3 PPMO each restricted intracellular parasite replication validating these molecular targets in tachyzoites. DHFR-specific PPMO administered to infected mice diminished parasite burden. Thus, these antisense oligomers are a versatile approach to validate T. gondii molecular targets, reduce essential T. gondii proteins in vitro and in vivo, and have potential for development as curative medicines.


Assuntos
Terapia Genética/métodos , Morfolinos/farmacologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/terapia , Animais , Apicomplexa/enzimologia , Apicomplexa/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/parasitologia , Técnicas de Transferência de Genes , Terapia Genética/normas , Humanos , Luciferases/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , Tetra-Hidrofolato Desidrogenase/genética , Toxoplasma/enzimologia , Toxoplasmose/genética
4.
Hum Immunol ; 85(6): 111149, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342923

RESUMO

BACKGROUND: The clinical spectrum of COVID-19 varies considerably, ranging from asymptomatic cases to severe disease and even death. This variability can partly be attributed to genetic differences in genes associated with inflammation and immune responses. Among these genes, Interferon Induced with Helicase C Domain 1 (IFIH1), which codes for a cytoplasmic sensor, plays a crucial role in detecting SARS-CoV-2 viral RNA and initiating the antiviral interferon (IFN) response, thereby constituting a key element of innate immune defense. AIM: This study aims to examine the association between genetic variants in the IFIH1 gene and susceptibility to, as well as the severity of, COVID-19 in the Moroccan population. MATERIALS AND METHODS: We conducted a case-control study involving 299 COVID-19 positive patients (149 severe, 150 benign) and 145 uninfected-SARS-CoV-2 controls. We determined the genotypes of two functional variants, rs1990760 (Ala946Thr) and rs3747517 (His843Arg), in the IFIH1 gene using predesigned TaqMan real-time allelic discrimination assay. RESULTS: Our results indicated that the TT genotype of rs1990760 was associated with increased susceptibility to SARS-CoV-2 under a recessive model (odds ratio [OR] = 2.22, 95 % confidence interval [CI] 1.28-3.84, P=0.003). Conversely, the CT genotype appeared to confer protection against SARS-CoV-2 infection (OR=0.58, 95 % CI 0.38-0.91, P=0.016) and COVID-19 severity (OR=0.56, 95 % CI 0.34-0.91, P=0.019). No significant association was found between rs3747517 and the risk of hospitalization or infection susceptibility. CONCLUSION: These findings underscore the significance of genetic variability in the IFIH1 gene in shaping individual responses to SARS-CoV-2 in the Moroccan population.

5.
iScience ; 27(1): 108477, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205261

RESUMO

Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.

6.
Vaccines (Basel) ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37766162

RESUMO

CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found that immunizing mice with AS15 combined with GLA-SE, a TLR-4 agonist in emulsion adjuvant, can be either helpful in protecting male and female mice at early stages against Type I and Type II Toxoplasma parasites or harmful (lethal with intestinal, hepatic, and spleen pathology associated with a storm of IL6). Introducing the universal CD4+ T cell epitope PADRE abrogates the harmful phenotype of AS15. Our findings demonstrate quantitative and qualitative features of an effective Toxoplasma-specific CD4+ T cell response that should be considered in testing next-generation vaccines against toxoplasmosis. Our results also are cautionary that individual vaccine constituents can cause severe harm depending on the company they keep.

7.
Antimicrob Agents Chemother ; 56(5): 2666-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22354304

RESUMO

Toxoplasma gondii is a protozoan parasite that can damage the human brain and eyes. There are no curative medicines. Herein, we describe our discovery of N-benzoyl-2-hydroxybenzamides as a class of compounds effective in the low nanomolar range against T. gondii in vitro and in vivo. Our lead compound, QQ-437, displays robust activity against the parasite and could be useful as a new scaffold for development of novel and improved inhibitors of T. gondii. Our genome-wide investigations reveal a specific mechanism of resistance to N-benzoyl-2-hydroxybenzamides mediated by adaptin-3ß, a large protein from the secretory protein complex. N-Benzoyl-2-hydroxybenzamide-resistant clones have alterations of their secretory pathway, which traffics proteins to micronemes, rhoptries, dense granules, and acidocalcisomes/plant-like vacuole (PLVs). N-Benzoyl-2-hydroxybenzamide treatment also alters micronemes, rhoptries, the contents of dense granules, and, most markedly, acidocalcisomes/PLVs. Furthermore, QQ-437 is active against chloroquine-resistant Plasmodium falciparum. Our studies reveal a novel class of compounds that disrupts a unique secretory pathway of T. gondii, with the potential to be used as scaffolds in the search for improved compounds to treat the devastating diseases caused by apicomplexan parasites.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Antiprotozoários/farmacologia , Benzamidas/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antimaláricos/síntese química , Antimaláricos/farmacologia , Antiprotozoários/síntese química , Benzamidas/síntese química , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Humanos , Concentração Inibidora 50 , Organelas/efeitos dos fármacos , Organelas/genética , Organelas/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Quantitativa Estrutura-Atividade , Via Secretória/efeitos dos fármacos , Via Secretória/fisiologia , Toxoplasma/genética , Toxoplasma/metabolismo
8.
J Biol Chem ; 285(27): 20827-33, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20439460

RESUMO

The survival and proliferation of the obligate intracellular malaria parasite Plasmodium falciparum require salvage of essential purines from the host. Genetic studies have previously shown that the parasite plasma membrane purine permease, PfNT1, plays an essential function in the transport of all naturally occurring purine nucleosides and nucleobases across the parasite plasma membrane. Here, we describe an intracellular permease, PfNT2. PfNT2 is, like PfNT1, a member of the equilibrative nucleoside transporter family. Confocal and immunoelectron microscopic analyses of transgenic parasites harboring green fluorescent protein- or hemagglutinin-tagged PfNT2 demonstrated endoplasmic reticulum localization. This localization was confirmed by colocalization with the endoplasmic reticulum marker PfBiP. Using yeast as a surrogate system, we show that targeting PfNT2 to the plasma membrane of fui1Delta cells lacking the plasma membrane nucleoside transporter Fui1 confers sensitivity to the toxic nucleoside analog 5-fluorouridine. This study provides the first evidence of an intracellular purine permease in apicomplexan parasites and suggests a novel biological function for the parasite endoplasmic reticulum during malaria infection.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Nucleosídeos/genética , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Retículo Endoplasmático/ultraestrutura , Eritrócitos/parasitologia , Floxuridina/metabolismo , Genes Reporter , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/sangue , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Imunoeletrônica , Proteínas de Transporte de Nucleosídeos/metabolismo , Parasitemia/sangue , Plasmodium falciparum/genética , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transfecção
9.
Expert Rev Mol Diagn ; 21(2): 141-160, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593219

RESUMO

INTRODUCTION: SARS-Cov-2 first appeared in Wuhan, China, in December 2019 and spread all over the world soon after that. Given the infectious nature ofSARS-CoV-2, fast and accurate diagnosis tools are important to detect the virus. In this review, we discuss the different diagnostic tests that are currently being implemented in laboratories and provide a description of various COVID-19 kits. AREAS COVERED: We summarize molecular techniques that target the viral load, serological methods used for SARS-CoV-2 specific antibodies detection as well as newly developed faster assays for the detection of SARS-COV 2 in various biological samples. EXPERT OPINION: In the light of the widespread pandemic, the massive diagnosis of COVID-19, using various detection techniques, appears to be the most effective strategy for monitoring and containing its propagation.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/tendências , Teste Sorológico para COVID-19/métodos , Teste Sorológico para COVID-19/tendências , COVID-19/diagnóstico , Anticorpos Antivirais/imunologia , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Técnicas de Laboratório Clínico , Humanos , Imunoensaio , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Laboratórios , Radiografia Torácica , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Computadorizada por Raios X
10.
Emerg Microbes Infect ; 10(1): 1675-1682, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34165384

RESUMO

Point-of-care (POC) testing for Toxoplasma infection has the potential to revolutionize diagnosis and management of toxoplasmosis, especially in high-risk populations in areas with significant environmental contamination and poor health infrastructure precluding appropriate follow-up and preventing access to medical care. Toxoplasmosis is a significant public health challenge in Morocco, with a relatively heavy burden of infection and, to this point, minimal investment nationally to address this infection. Herein, we analyse the performance of a novel, low-cost rapid test using fingerstick-derived whole blood from 632 women (82 of whom were pregnant) from slums, educational centres, and from nomad groups across different geographical regions (i.e. oceanic, mountainous) of Morocco. The POC test was highly sensitive and specific from all settings. In the first group of 283 women, sera were tested by Platelia ELISA IgG and IgM along with fingerstick whole blood test. Then a matrix study with 349 women was performed in which fingerstick - POC test results and serum obtained by venipuncture contemporaneously were compared. These results show high POC test performance (Sensitivity: 96.4% [IC95 90.6-98.9%]; Specificity: 99.6% [IC95 97.3-99.9%]) and high prevalence of Toxoplasma infection among women living in rural and mountainous areas, and in urban areas with lower educational levels. The high performance of POC test confirms that it can reduce the need for venipuncture and clinical infrastructure in a low-resource setting. It can be used to efficiently perform seroprevalence determinations in large group settings across a range of demographics, and potentially expands healthcare access, thereby preventing human suffering.


Assuntos
Testes Imediatos/normas , Toxoplasma/imunologia , Toxoplasmose/sangue , Toxoplasmose/diagnóstico , Adolescente , Adulto , Idoso , Anticorpos Antiprotozoários/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Pessoa de Meia-Idade , Marrocos/epidemiologia , Testes Imediatos/economia , Gravidez , Prevalência , Fatores de Risco , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Toxoplasmose/epidemiologia , Toxoplasmose/imunologia , Toxoplasmose Congênita/sangue , Toxoplasmose Congênita/diagnóstico , Adulto Jovem
11.
J Proteome Res ; 9(1): 359-72, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19886702

RESUMO

Toxoplasma gondii is an apicomplexan of both medical and veterinary importance which is classified as an NIH Category B priority pathogen. It is best known for its ability to cause congenital infection in immune competent hosts and encephalitis in immune compromised hosts. The highly stable and specialized microtubule-based cytoskeleton participates in the invasion process. The genome encodes three isoforms of both alpha- and beta-tubulin and we show that the tubulin is extensively altered by specific post-translational modifications (PTMs) in this paper. T. gondii tubulin PTMs were analyzed by mass spectrometry and immunolabeling using specific antibodies. The PTMs identified on alpha-tubulin included acetylation of Lys40, removal of the last C-terminal amino acid residue Tyr453 (detyrosinated tubulin) and truncation of the last five amino acid residues. Polyglutamylation was detected on both alpha- and beta-tubulins. An antibody directed against mammalian alpha-tubulin lacking the last two C-terminal residues (Delta2-tubulin) labeled the apical region of this parasite. Detyrosinated tubulin was diffusely present in subpellicular microtubules and displayed an apparent accumulation at the basal end. Methylation, a PTM not previously described on tubulin, was also detected. Methylated tubulins were not detected in the host cells, human foreskin fibroblasts, suggesting that this may be a modification specific to the Apicomplexa.


Assuntos
Citoesqueleto/metabolismo , Processamento de Proteína Pós-Traducional , Toxoplasma/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Sequência de Aminoácidos , Citoesqueleto/química , Eletroforese em Gel Bidimensional , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metilação , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteômica/métodos , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Toxoplasma/química , Tubulina (Proteína)/química
12.
Sci Rep ; 10(1): 16984, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046728

RESUMO

Fighting smart diseases requires smart vaccines. Novel ways to present protective immunogenic peptide epitopes to human immune systems are needed. Herein, we focus on Self Assembling Protein Nanoparticles (SAPNs) as scaffolds/platforms for vaccine delivery that produce strong immune responses against Toxoplasma gondii in HLA supermotif, transgenic mice. Herein, we present a useful platform to present peptides that elicit CD4+, CD8+ T and B cell immune responses in a core architecture, formed by flagellin, administered in combination with TLR4 ligand-emulsion (GLA-SE) adjuvant. We demonstrate protection of HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02 mice against toxoplasmosis by (i) this novel chimeric polypeptide, containing epitopes that elicit CD8+ T cells, CD4+ T helper cells, and IgG2b antibodies, and (ii) adjuvant activation of innate immune TLR4 and TLR5 pathways. HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02q11 transgenic mouse splenocytes with peptides demonstrated predicted genetic restrictions. This creates a new paradigm-shifting vaccine approach to prevent toxoplasmosis, extendable to other diseases.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Protozoários/química , Células Cultivadas , Epitopos/química , Antígeno HLA-A11/metabolismo , Antígeno HLA-A2/metabolismo , Antígeno HLA-B7/metabolismo , Humanos , Imunoglobulina G/sangue , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Nanopartículas/química , Engenharia de Proteínas
13.
Artigo em Inglês | MEDLINE | ID: mdl-32626661

RESUMO

Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Camundongos , Plasmodium falciparum
15.
Artigo em Inglês | MEDLINE | ID: mdl-30838177

RESUMO

Twenty-two compounds belonging to several classes of polyamine analogs have been examined for their ability to inhibit the growth of the human malaria parasite Plasmodium falciparum in vitro and in vivo. Four lead compounds from the thiourea sub-series and one compound from the urea-based analogs were found to be potent inhibitors of both chloroquine-resistant (Dd2) and chloroquine-sensitive (3D7) strains of Plasmodium with IC50 values ranging from 150 to 460 nM. In addition, the compound RHW, N1,N7-bis (3-(cyclohexylmethylamino) propyl) heptane-1,7-diamine tetrabromide was found to inhibit Dd2 with an IC50 of 200 nM. When RHW was administered to P. yoelii-infected mice at 35 mg/kg for 4 days, it significantly reduced parasitemia. RHW was also assayed in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the two drugs were found not to have synergistic antimalarial activity. Furthermore, these inhibitors led to decreased cellular spermidine and spermine levels in P. falciparum, suggesting that they exert their antimalarial activities by inhibition of spermidine synthase.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Poliaminas/farmacologia , Espermidina/análise , Espermina/análise , Animais , Antimaláricos/administração & dosagem , Modelos Animais de Doenças , Sinergismo Farmacológico , Concentração Inibidora 50 , Malária/tratamento farmacológico , Camundongos , Carga Parasitária , Parasitemia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/química , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium yoelii/efeitos dos fármacos , Poliaminas/administração & dosagem
17.
Mol Biochem Parasitol ; 161(2): 130-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18639591

RESUMO

The malaria parasite, Plasmodium falciparum, is unable to synthesize the purine ring de novo and is therefore wholly dependent upon purine salvage from the host for survival. Previous studies have indicated that a P. falciparum strain in which the purine transporter PfNT1 had been disrupted was unable to grow on physiological concentrations of adenosine, inosine and hypoxanthine. We have now used an episomally complemented pfnt1Delta knockout parasite strain to confirm genetically the functional role of PfNT1 in P. falciparum purine uptake and utilization. Episomal complementation by PfNT1 restored the ability of pfnt1Delta parasites to transport and utilize adenosine, inosine and hypoxanthine as purine sources. The ability of wild-type and pfnt1Delta knockout parasites to transport and utilize the other physiologically relevant purines adenine, guanine, guanosine and xanthine was also examined. Unlike wild-type and complemented P. falciparum parasites, pfnt1Delta parasites could not proliferate on guanine, guanosine or xanthine as purine sources, and no significant transport of these substrates could be detected in isolated parasites. Interestingly, whereas isolated pfnt1Delta parasites were still capable of adenine transport, these parasites grew only when adenine was provided at high, non-physiological concentrations. Taken together these results demonstrate that, in addition to hypoxanthine, inosine and adenosine, PfNT1 is essential for the transport and utilization of xanthine, guanine and guanosine.


Assuntos
Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Adenina/metabolismo , Animais , Eritrócitos/parasitologia , Deleção de Genes , Guanina/metabolismo , Guanosina/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Purinas/química , Xantina/metabolismo
19.
Emerg Microbes Infect ; 7(1): 165, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262847

RESUMO

Globally, congenital toxoplasmosis remains a significant cause of morbidity and mortality, and outbreaks of infection with T. gondii represent a significant, emerging public health burden, especially in the developing world. This parasite is a threat to public health. Disease often is not recognized and is inadequately managed. Herein, we analyze the status of congenital toxoplasmosis in Morocco, Colombia, the United States, and France. We identify the unique challenges faced by each nation in the implementation of optimal approaches to congenital toxoplasmosis as a public health problem. We suggest that developed and developing countries use a multipronged approach, modeling their public health management protocols after those in France. We conclude that education, screening, appropriate treatment, and the development of novel modalities will be required to intervene successfully in caring for individuals with this infection. Gestational screening has been demonstrated to be cost-effective, morbidity-sparing, and life-saving. Recognition of the value and promise of public health interventions to prevent human suffering from this emerging infection will facilitate better patient and societal outcomes.


Assuntos
Toxoplasma/fisiologia , Toxoplasmose Congênita/parasitologia , Colômbia , França , Humanos , Marrocos , Saúde Pública , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasmose Congênita/tratamento farmacológico , Estados Unidos
20.
Artigo em Inglês | MEDLINE | ID: mdl-30345257

RESUMO

Toxoplasma gondii, an Apicomplexan parasite, causes significant morbidity and mortality, including severe disease in immunocompromised hosts and devastating congenital disease, with no effective treatment for the bradyzoite stage. To address this, we used the Tropical Disease Research database, crystallography, molecular modeling, and antisense to identify and characterize a range of potential therapeutic targets for toxoplasmosis. Phosphoglycerate mutase II (PGMII), nucleoside diphosphate kinase (NDK), ribulose phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), and ornithine aminotransferase (OAT) were structurally characterized. Crystallography revealed insights into the overall structure, protein oligomeric states and molecular details of active sites important for ligand recognition. Literature and molecular modeling suggested potential inhibitors and druggability. The targets were further studied with vivoPMO to interrupt enzyme synthesis, identifying the targets as potentially important to parasitic replication and, therefore, of therapeutic interest. Targeted vivoPMO resulted in statistically significant perturbation of parasite replication without concomitant host cell toxicity, consistent with a previous CRISPR/Cas9 screen showing PGM, RPE, and RPI contribute to parasite fitness. PGM, RPE, and RPI have the greatest promise for affecting replication in tachyzoites. These targets are shared between other medically important parasites and may have wider therapeutic potential.


Assuntos
Enzimas/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Toxoplasma/enzimologia , Toxoplasma/fisiologia , Cristalografia por Raios X , Enzimas/química , Enzimas/genética , Técnicas de Silenciamento de Genes , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA