Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biopharm Drug Dispos ; 45(2): 71-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400763

RESUMO

This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon. This was conducted both with and without perfusion of metformin or verapamil. The findings revealed that the vildagliptin absorptive clearance per unit length varied by site and was in the order as follows: ileum < jejunum < duodenum < ascending colon, implying that P-gp is significant in the reduction of vildagliptin absorption. Also, the arrangement cannot reverse intestinal P-gp, but the observations suggest that P-gp is significant in reducing vildagliptin absorption. Verapamil co-perfusion significantly increased the vildagliptin absorptive clearance by 2.4 and 3.2 fold through the jejunum and ileum, respectively. Metformin co-administration showed a non-significant decrease in vildagliptin absorptive clearance through all tested segments. Vildagliptin absorption was site-dependent and may be related to the intestinal P-glycoprotein content. This may aid in understanding the important elements that influence vildagliptin absorption, besides drug-drug interactions that can occur in type 2 diabetic patients taking vildagliptin in conjunction with other drugs that can modify the P-glycoprotein level.


Assuntos
Metformina , Animais , Humanos , Coelhos , Vildagliptina/farmacologia , Metformina/farmacologia , Verapamil/farmacologia , Absorção Intestinal , Intestinos , Subfamília B de Transportador de Cassetes de Ligação de ATP
2.
Drug Metab Dispos ; 46(5): 729-739, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29496721

RESUMO

Membrane transporters play an important role in the absorption, distribution, clearance, and elimination of drugs. Supported by the pharmacokinetics data in human, several transporters including organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, multidrug and toxin extrusion (MATE) proteins, P-glycoprotein and breast cancer resistance protein are suggested to be of clinical relevance. An early understanding of the transporter role in drug disposition and clearance allows reliable prediction/evaluation of pharmacokinetics and changes due to drug-drug interactions (DDIs) or genetic polymorphisms. We recently proposed an extended clearance classification system (ECCS) based on simple drug properties (i.e., ionization, permeability, and molecular weight) to predict the predominant clearance mechanism. According to this framework, systemic clearance of class 1B and 3B drugs is likely determined by the OATP-mediated hepatic uptake. Class 3A and 4 drugs, and certain class 3B drugs, are predominantly cleared by renal, wherein, OAT1, OAT3, OCT2, and MATE proteins could contribute to their active renal secretion. Intestinal efflux and uptake transporters largely influence the oral pharmacokinetics of class 3A, 3B, and 4 drugs. We discuss the paradigm of applying the ECCS framework in mapping the role of clinically relevant drug transporters in early discovery and development; thereby implementing the right strategy to allow optimization of drug exposure and evaluation of clinical risk due to DDIs and pharmacogenomics.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Interações Medicamentosas/fisiologia , Humanos , Cinética
3.
Drug Metab Dispos ; 46(4): 346-356, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29330218

RESUMO

Understanding liver exposure of hepatic transporter substrates in clinical studies is often critical, as it typically governs pharmacodynamics, drug-drug interactions, and toxicity for certain drugs. However, this is a challenging task since there is currently no easy method to directly measure drug concentration in the human liver. Using bosentan as an example, we demonstrate a new approach to estimate liver exposure based on observed systemic pharmacokinetics from clinical studies using physiologically based pharmacokinetic modeling. The prediction was verified to be both accurate and precise using sensitivity analysis. For bosentan, the predicted pseudo steady-state unbound liver-to-unbound systemic plasma concentration ratio was 34.9 (95% confidence interval: 4.2, 50). Drug-drug interaction (i.e., CYP3A and CYP2B6 induction) and inhibition of hepatic transporters (i.e., bile salt export pump, multidrug resistance-associated proteins, and sodium-taurocholate cotransporting polypeptide) were predicted based on the estimated unbound liver tissue or plasma concentrations. With further validation and refinement, we conclude that this approach may serve to predict human liver exposure and complement other methods involving tissue biopsy and imaging.


Assuntos
Fígado/metabolismo , Sulfonamidas/sangue , Sulfonamidas/farmacocinética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bosentana , Interações Medicamentosas/fisiologia , Voluntários Saudáveis , Hepatócitos/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo
4.
Pharm Res ; 33(12): 3021-3030, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620173

RESUMO

PURPOSE: To assess the utility of Extended Clearance Classification System (ECCS) in understanding absorption, distribution, metabolism, and elimination (ADME) attributes and enabling victim drug-drug interaction (DDI) predictions. METHODS: A database of 368 drugs with relevant ADME parameters, main metabolizing enzymes, uptake transporters, efflux transporters, and highest change in exposure (%AUC) in presence of inhibitors was developed using published literature. Drugs were characterized according to ECCS using ionization, molecular weight and estimated permeability. RESULTS: Analyses suggested that ECCS class 1A drugs are well absorbed and systemic clearance is determined by metabolism mediated by CYP2C, esterases, and UGTs. For class 1B drugs, oral absorption is high and the predominant clearance mechanism is hepatic uptake mediated by OATP transporters. High permeability neutral/basic drugs (class 2) showed high oral absorption, with metabolism mediated generally by CYP3A, CYP2D6 and UGTs as the predominant clearance mechanism. Class 3A/4 drugs showed moderate absorption with dominant renal clearance involving OAT/OCT2 transporters. Class 3B drugs showed low to moderate absorption with hepatic uptake (OATPs) and/or renal clearance as primary clearance mechanisms. The highest DDI risk is typically seen with class 2/1B/3B compounds manifested by inhibition of either CYP metabolism or active hepatic uptake. Class 2 showed a wider range in AUC change likely due to a variety of enzymes involved. DDI risk for class 3A/4 is small and associated with inhibition of renal transporters. CONCLUSIONS: ECCS provides a framework to project ADME profiles and further enables prediction of victim DDI liabilities in drug discovery and development.


Assuntos
Simulação por Computador , Bases de Dados de Compostos Químicos , Modelos Biológicos , Preparações Farmacêuticas/química , Adsorção , Descoberta de Drogas , Interações Medicamentosas , Humanos , Íons , Rim/metabolismo , Cinética , Fígado/metabolismo , Peso Molecular , Permeabilidade , Preparações Farmacêuticas/classificação , Preparações Farmacêuticas/metabolismo
5.
Pharm Res ; 32(12): 3785-802, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26155985

RESUMO

Early prediction of clearance mechanisms allows for the rapid progression of drug discovery and development programs, and facilitates risk assessment of the pharmacokinetic variability associated with drug interactions and pharmacogenomics. Here we propose a scientific framework--Extended Clearance Classification System (ECCS)--which can be used to predict the predominant clearance mechanism (rate-determining process) based on physicochemical properties and passive membrane permeability. Compounds are classified as: Class 1A--metabolism as primary systemic clearance mechanism (high permeability acids/zwitterions with molecular weight (MW) ≤400 Da), Class 1B--transporter-mediated hepatic uptake as primary systemic clearance mechanism (high permeability acids/zwitterions with MW >400 Da), Class 2--metabolism as primary clearance mechanism (high permeability bases/neutrals), Class 3A--renal clearance (low permeability acids/zwitterions with MW ≤400 Da), Class 3B--transporter mediated hepatic uptake or renal clearance (low permeability acids/zwitterions with MW >400 Da), and Class 4--renal clearance (low permeability bases/neutrals). The performance of the ECCS framework was validated using 307 compounds with single clearance mechanism contributing to ≥70% of systemic clearance. The apparent permeability across clonal cell line of Madin - Darby canine kidney cells, selected for low endogenous efflux transporter expression, with a cut-off of 5 × 10(-6) cm/s was used for permeability classification, and the ionization (at pH7) was assigned based on calculated pKa. The proposed scheme correctly predicted the rate-determining clearance mechanism to be either metabolism, hepatic uptake or renal for ~92% of total compounds. We discuss the general characteristics of each ECCS class, as well as compare and contrast the framework with the biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS). Collectively, the ECCS framework is valuable in early prediction of clearance mechanism and can aid in choosing the right preclinical tool kit and strategy for optimizing drug exposure and evaluating clinical risk of pharmacokinetic variability caused by drug interactions and pharmacogenomics.


Assuntos
Descoberta de Drogas , Rim/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica , Preparações Farmacêuticas/metabolismo , Eliminação Renal , Animais , Linhagem Celular , Cães , Descoberta de Drogas/métodos , Humanos , Modelos Biológicos , Permeabilidade , Preparações Farmacêuticas/classificação
6.
Drug Metab Dispos ; 41(5): 966-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23393219

RESUMO

Repaglinide is mainly metabolized by cytochrome P450 enzymes CYP2C8 and CYP3A4, and it is also a substrate to a hepatic uptake transporter, organic anion transporting polypeptide (OATP)1B1. The purpose of this study is to predict the dosing time-dependent pharmacokinetic interactions of repaglinide with rifampicin, using mechanistic models. In vitro hepatic transport of repaglinide, characterized using sandwich-cultured human hepatocytes, and intrinsic metabolic parameters were used to build a dynamic whole-body physiologically-based pharmacokinetic (PBPK) model. The PBPK model adequately described repaglinide plasma concentration-time profiles and successfully predicted area under the plasma concentration-time curve ratios of repaglinide (within ± 25% error), dosed (staggered 0-24 hours) after rifampicin treatment when primarily considering induction of CYP3A4 and reversible inhibition of OATP1B1 by rifampicin. Further, a static mechanistic "extended net-effect" model incorporating transport and metabolic disposition parameters of repaglinide and interaction potency of rifampicin was devised. Predictions based on the static model are similar to those observed in the clinic (average error ∼19%) and to those based on the PBPK model. Both the models suggested that the combined effect of increased gut extraction and decreased hepatic uptake caused minimal repaglinide systemic exposure change when repaglinide is dosed simultaneously or 1 hour after the rifampicin dose. On the other hand, isolated induction effect as a result of temporal separation of the two drugs translated to an approximate 5-fold reduction in repaglinide systemic exposure. In conclusion, both dynamic and static mechanistic models are instrumental in delineating the quantitative contribution of transport and metabolism in the dosing time-dependent repaglinide-rifampicin interactions.


Assuntos
Carbamatos/farmacologia , Citocromo P-450 CYP3A/biossíntese , Modelos Teóricos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Piperidinas/farmacologia , Rifampina/farmacologia , Carbamatos/sangue , Interações Medicamentosas , Indução Enzimática , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Piperidinas/sangue , Rifampina/sangue
7.
Pharm Res ; 30(4): 1188-99, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23307347

RESUMO

PURPOSE: Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. METHODS: In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-ß-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. RESULTS: In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-ß-glucuronide. CONCLUSIONS: This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.


Assuntos
Carbamatos/farmacocinética , Genfibrozila/farmacocinética , Hepatócitos/metabolismo , Hipoglicemiantes/farmacocinética , Hipolipemiantes/farmacocinética , Piperidinas/farmacocinética , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Carbamatos/farmacologia , Linhagem Celular , Citocromo P-450 CYP2C8 , Interações Medicamentosas , Genfibrozila/análogos & derivados , Genfibrozila/farmacologia , Hepatócitos/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado , Modelos Biológicos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Piperidinas/farmacologia
8.
Drug Metab Dispos ; 40(8): 1527-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22580868

RESUMO

Biliary excretion (BE) is a major elimination pathway, and its prediction is particularly important for optimization of systemic and/or target-site exposure of new molecular entities. The objective is to characterize the physicochemical space associated with hepatobiliary transport and rat BE and to develop in silico models. BE of 123 in-house compounds was obtained using the bile-duct cannulated rat model. Human and rat hepatic uptake transporters (hOATP1B1, hOATP1B3, hOATP2B1, and rOatp1b2) substrates (n = 183) were identified using transfected cells. Furthermore, the datasets were extended by adding BE of 163 compounds and 97 organic anion transporting polypeptide (OATP) substrates from the literature. Approximately 60% of compounds showing percentage of BE (%BE) ≥ 10 are anions, with mean BE of anions (36%) more than 3-fold higher than that of nonacids (11%). Compounds with %BE ≥ 10 are found to have high molecular mass, large polar surface area, more rotatable bonds, and high H-bond count, whereas the lipophilicity and passive membrane permeability are lower compared with compounds with %BE < 10. According to statistical analysis and principal component analysis, hOATPs and rOatp1b2 substrates showed physicochemical characteristics that were similar to those of the %BE ≥ 10 dataset. We further build categorical in silico models to predict rat BE, and the models (gradient boosting machine and scoring function) developed showed 80% predictability in identifying the rat BE bins (%BE ≥ 10 or < 10). In conclusion, the significant overlap of the property space of OATP substrates and rat BE suggests a predominant role of sinusoidal uptake transporters in biliary elimination. Categorical in silico models to predict rat BE were developed, and successful predictions were achieved.


Assuntos
Sistema Biliar/metabolismo , Fígado/metabolismo , Modelos Teóricos , Animais , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
9.
Drug Metab Dispos ; 40(6): 1085-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22381335

RESUMO

To assess the feasibility of using sandwich-cultured human hepatocytes (SCHHs) as a model to characterize transport kinetics for in vivo pharmacokinetic prediction, the expression of organic anion-transporting polypeptide (OATP) proteins in SCHHs, along with biliary efflux transporters, was confirmed quantitatively by liquid chromatography-tandem mass spectrometry. Rifamycin SV (Rif SV), which was shown to completely block the function of OATP transporters, was selected as an inhibitor to assess the initial rates of active uptake. The optimized SCHH model was applied in a retrospective investigation of compounds with known clinically significant OATP-mediated uptake and was applied further to explore drug-drug interactions (DDIs). Greater than 50% inhibition of active uptake by Rif SV was found to be associated with clinically significant OATP-mediated DDIs. We propose that the in vitro active uptake value therefore could serve as a cutoff for class 3 and 4 compounds of the Biopharmaceutics Drug Disposition Classification System, which could be integrated into the International Transporter Consortium decision tree recommendations to trigger clinical evaluations for potential DDI risks. Furthermore, the kinetics of in vitro hepatobiliary transport obtained from SCHHs, along with protein expression scaling factors, offer an opportunity to predict complex in vivo processes using mathematical models, such as physiologically based pharmacokinetics models.


Assuntos
Interações Medicamentosas/fisiologia , Hepatócitos/metabolismo , Preparações Farmacêuticas/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Estudos Retrospectivos
10.
Drug Metab Dispos ; 40(2): 407-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22031626

RESUMO

Sandwich-cultured human hepatocytes (SCHH) have been widely used for in vitro assessments of biliary clearance. However, the modulation of metabolism enzymes has not been fully evaluated in this system. The present study was therefore undertaken to determine the activity of cytochrome P450 (P450) 1A2, 2C8, 2C9, 2C19, 2D6, and 3A and to evaluate the impact of 1-aminobenzotriazole (ABT) on hepatic uptake and biliary excretion in SCHH. The SCHH maintained integrity and viability as determined by lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays conducted over the culture period. Although all assessed P450 activity decreased in day 2 SCHH, the extent of the decrease and the subsequent rebound in activity varied across the different isoforms. Day 5 CYP1A2 activity was approximately 2.5-fold higher than day 1 activity, whereas the CYP3A and CYP2C9 activities were 90 and 60% of the day 1 levels, respectively. In contrast, the initial CYP2C8, CYP2C19, and CYP2D6 activity losses did not rebound over the 5-day culture period. Furthermore, ABT was not found to have an effect, whether directly or indirectly as a P450 inactivator, with respect to the hepatic transport of rosuvastatin, atrovastatin, and midazolam in SCHH. Taken together, these results suggest that the SCHH model is a reliable tool to characterize hepatic uptake and biliary excretion. Due to the differential modulation of P450 activity, SCHH may not be considered a suitable tool for metabolic stability assessments with compounds predominantly cleared by certain P450 enzymes.


Assuntos
Bile/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Modelos Biológicos , Triazóis/farmacologia , Ansiolíticos/metabolismo , Anticolesterolemiantes/metabolismo , Atorvastatina , Transporte Biológico/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Inibidores das Enzimas do Citocromo P-450 , Fluorbenzenos/metabolismo , Hepatócitos/enzimologia , Ácidos Heptanoicos/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Midazolam/metabolismo , Pirimidinas/metabolismo , Pirróis/metabolismo , Rosuvastatina Cálcica , Sulfonamidas/metabolismo , Fatores de Tempo
11.
Mol Pharm ; 9(5): 1199-212, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22489626

RESUMO

The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 µg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified pH-dependent permeability and solubility criteria that can be used to assign provisional biopharmaceutics class at early stage of the drug discovery process. Additionally, such a classification system will enable discovery scientists to assess the potential limiting factors to oral absorption, as well as help predict the drug disposition mechanisms and potential drug-drug interactions.


Assuntos
Biofarmácia/métodos , Animais , Linhagem Celular , Cães , Descoberta de Drogas/métodos , Concentração de Íons de Hidrogênio , Permeabilidade , Solubilidade
12.
Mol Pharm ; 8(4): 1303-13, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21710988

RESUMO

The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 µM, 0.53 ± 0.2 µM and 2.2 ± 0.4 µM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several statins due to their transporter affinity at acidic pH.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Atorvastatina , Células CACO-2 , Linhagem Celular , Cromatografia Líquida , Estrona/análogos & derivados , Estrona/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Fluorbenzenos/metabolismo , Fluvastatina , Ácidos Heptanoicos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Indóis/metabolismo , Absorção Intestinal , Transportadores de Ânions Orgânicos/genética , Pirimidinas/metabolismo , Pirróis/metabolismo , Rosuvastatina Cálcica , Sulfonamidas/metabolismo , Espectrometria de Massas em Tandem
13.
Emerg Microbes Infect ; 8(1): 624-636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30999821

RESUMO

Flaviviruses are (re)-emerging RNA viruses strictly dependent on lipid metabolism for infection. In the search for host targeting antivirals, we explored the effect of pharmacological modulation of fatty acid metabolism during flavivirus infection. Considering the central role of acetyl-Coenzyme A carboxylase (ACC) on fatty acid metabolism, we analyzed the effect of three small-molecule ACC inhibitors (PF-05175157, PF-05206574, and PF-06256254) on the infection of medically relevant flaviviruses, namely West Nile virus (WNV), dengue virus, and Zika virus. Treatment with these compounds inhibited the multiplication of the three viruses in cultured cells. PF-05175157 induced a reduction of the viral load in serum and kidney in WNV-infected mice, unveiling its therapeutic potential for the treatment of chronic kidney disease associated with persistent WNV infection. This study constitutes a proof of concept of the reliability of ACC inhibitors to become viable antiviral candidates. These results support the repositioning of metabolic inhibitors as broad-spectrum antivirals.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Vírus da Dengue/fisiologia , Dengue/enzimologia , Inibidores Enzimáticos/administração & dosagem , Febre do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/fisiologia , Infecção por Zika virus/enzimologia , Zika virus/fisiologia , Acetil-CoA Carboxilase/metabolismo , Animais , Antivirais/administração & dosagem , Dengue/tratamento farmacológico , Dengue/virologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Replicação Viral/efeitos dos fármacos , Febre do Nilo Ocidental/tratamento farmacológico , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/genética , Zika virus/efeitos dos fármacos , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
14.
J Med Chem ; 61(7): 3114-3125, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29570292

RESUMO

Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g., 1) suffering from time-dependent inhibition (TDI) of CYP3A4, we sought design avenues that would eliminate this risk. One such approach arose from the observation that carboxylic acid-based intermediates employed in our discovery efforts retained high MAP4K4 inhibitory potency and were devoid of the TDI risk. The medicinal chemistry effort that led to the discovery of this central nervous system-impaired inhibitor together with its preclinical safety profile is described.


Assuntos
Aminopiridinas/síntese química , Aminopiridinas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Aminopiridinas/efeitos adversos , Animais , Disponibilidade Biológica , Ácidos Carboxílicos/química , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Descoberta de Drogas , Meia-Vida , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Molecular , Inibidores de Proteínas Quinases/efeitos adversos , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/sangue
15.
Adv Drug Deliv Rev ; 116: 92-99, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28554577

RESUMO

Membrane transporters play a key role in the absorption, distribution, clearance, elimination, and transport of drugs. Understanding the drug properties and structure activity relationships (SAR) for affinity to membrane transporters is critical to optimize clearance and pharmacokinetics during drug design. To facilitate the early identification of clearance mechanism, a framework named the extended clearance classification system (ECCS) was recently introduced. Using in vitro and physicochemical properties that are readily available in early drug discovery, ECCS has been successfully applied to identify major clearance mechanism and to implicate the role of membrane transporters in determining pharmacokinetics. While the crystal structures for most of the drug transporters are currently not available, ligand-based modeling approaches that use information obtained from the structure and molecular properties of the ligands have been applied to associate the drug-related properties and transporter-mediated disposition. The approach allows prospective prediction of transporter both substrate and/or inhibitor affinity and build quantitative structure-activity relationship (QSAR) to enable early optimization of pharmacokinetics, tissue distribution and drug-drug interaction risk. Drug design applications can be further improved through uncovering transporter protein crystal structure and generation of quality data to refine and develop viable predictive models.


Assuntos
Proteínas de Membrana Transportadoras , Preparações Farmacêuticas/administração & dosagem , Animais , Descoberta de Drogas , Interações Medicamentosas , Humanos , Modelos Biológicos , Farmacocinética , Relação Quantitativa Estrutura-Atividade
16.
J Clin Pharmacol ; 56 Suppl 7: S99-S109, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385183

RESUMO

A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression. Although OATP-mediated uptake is often the rate-determining process in the hepatic clearance of substrate drugs, metabolic and/or biliary components also contribute to the overall hepatic disposition and, more importantly, to liver exposure. Clinical evidence suggests that alteration in biliary efflux transport or metabolic enzymes associated with genetic polymorphism leads to change in the pharmacodynamic response of statins, for which the pharmacological target resides in the liver. Perpetrator drugs may show inhibitory and/or induction effects on transporters and enzymes simultaneously. It is therefore important to adopt models that frame these multiple processes in a mechanistic sense for quantitative DDI predictions and to deconvolute the effects of individual processes on the plasma and hepatic exposure. In vitro data-informed mechanistic static and physiologically based pharmacokinetic models are proven useful in rationalizing and predicting transporter-mediated DDIs and the complex DDIs involving transporter-enzyme interplay.


Assuntos
Fígado/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Taxa de Depuração Metabólica/fisiologia , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Animais , Interações Medicamentosas/fisiologia , Humanos , Fígado/efeitos dos fármacos , Taxa de Depuração Metabólica/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas/administração & dosagem
17.
Curr Pharm Des ; 21(10): 1327-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25269560

RESUMO

The targeting of drugs to skeletal muscle is an emerging area of research. Driven by the need for new therapies to treat a range of muscle-associated diseases, these strategies aim to provide improved drug exposure at the site of action in skeletal muscle with reduced concentration in other tissues where unwanted side effects could occur. By interacting with muscle-specific cell surface recognition elements, both tissue localization and selective uptake into skeletal muscle cells can be achieved. The design of molecules that are substrates for muscle uptake transporters can provide concentration in m uscle tissue. For example, drug conjugates with carnitine can provide improved muscle uptake via OCTN2 transport. Binding to muscle surface recognition elements followed by endocytosis can allow even large molecules such as antibodies to enter muscle cells. Monoclonal antibody 3E10 demonstrated selective uptake into skeletal muscle in vivo. Hybrid adeno-associated viral vectors have recently shown promise for high skeletal muscle selectivity in gene transfer applications. Delivery technology methods, including electroporation of DNA plasmids, have also been investigated for selective muscle uptake. This review discusses challenges and opportunities for skeletal muscle targeting, highlighting specific examples and areas in need of additional research.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Transporte Biológico/fisiologia , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Eletroporação/métodos , Eletroporação/tendências , Humanos
18.
Expert Opin Drug Metab Toxicol ; 9(4): 459-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23331046

RESUMO

INTRODUCTION: Membrane transporters have been recognized to play a key role in determining the absorption, distribution and elimination processes of drugs. The organic anion-transporting polypeptide (OATP)1B1 and OATP1B3 isoforms are selectively expressed in the human liver and are known to cause significant drug-drug interactions (DDIs), as observed with an increasing number of drugs. It is evident that DDIs involving hepatic transporters are capable of altering systemic, as well as tissue-specific, exposure of drug substrates resulting in marked differences in drug safety and/or efficacy. It is therefore essential to quantitatively predict such interactions early in the drug development to mitigate clinical risks. AREAS COVERED: The role of hepatic uptake transporters in drug disposition and clinical DDIs has been reviewed with an emphasis on the current state of the models applicable for quantitative predictions. The readers will also gain insight into the in vitro experimental tools available to characterize transport kinetics, while appreciating the knowledge gaps in the in vitro-in vivo extrapolation (IVIVE), which warrant further investigation. EXPERT OPINION: Static and dynamic models can be convincingly applied to quantitatively predict drug interactions, early in drug discovery, to mitigate clinical risks as well as to avoid unnecessary clinical studies. Compared to basic models, which focus on individual processes, mechanistic models provide the ability to assess DDI potential for compounds with systemic disposition determined by both transporters and metabolic enzymes. However, complexities in the experimental tools and an apparent disconnect in the IVIVE of transport kinetics have limited the physiologically based pharmacokinetic modeling strategies. Emerging data on the expression of transporter proteins and tissue drug concentrations are expected to help bridge these gaps. In addition, detailed characterization of substrate kinetics can facilitate building comprehensive mechanistic models.


Assuntos
Fígado/citologia , Fígado/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Linhagem Celular , Fenômenos Químicos , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Fluorbenzenos/farmacocinética , Fluorbenzenos/uso terapêutico , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Cinética , Fígado/metabolismo , Modelos Teóricos , Pravastatina/farmacocinética , Pravastatina/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Rosuvastatina Cálcica , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico
19.
Curr Top Med Chem ; 13(7): 776-802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23578023

RESUMO

Targeting drugs to the gastrointestinal tract has been and continues to be an active area of research. Gut-targeting is an effective means of increasing the local concentration of active substance at the desired site of action while minimizing concentrations elsewhere in the body that could lead to unwanted side-effects. Several approaches to intestinal targeting exist. Physicochemical property manipulation can drive molecules to large, polar, low absorption space or alternatively to lipophilic, high clearance space in order to minimize systemic exposure. Design of compounds that are substrates for transporters within the gastrointestinal tract, either uptake or efflux, or at the hepato-biliary interface, may help to increase intestinal concentration. Prodrug strategies have been shown to be effective particularly for colon targeting, and several different technology formulation approaches are currently being researched. This review provides examples of various approaches to intestinal targeting, and discusses challenges and areas in need of future scientific advances.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Trato Gastrointestinal/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Humanos , Preparações Farmacêuticas/administração & dosagem
20.
Curr Protoc Toxicol ; Chapter 23: Unit 23.3.1-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22896010

RESUMO

This unit describes in detail the in vitro methods for measuring the interaction of new chemical entities (NCEs) with human renal transporters (hOAT1, hOAT2, and hOCT2) as both a substrate and inhibitor. Renal transporter substrate assays help in the identification of renal secretion mechanisms and assessment of the potential renal drug-drug interactions (DDIs) for NCE as a target, as well as to predict its renal clearance in humans. Human renal transporter (hOAT1, hOAT2, and hOCT2) inhibition assays characterize the inhibition potency of NCE and predict the potential for renal DDIs as a perpetrator with xenobiotics and drugs that are mainly renally cleared. In addition, such inhibition assays enable a better assessment of the potential for renal transporter-mediated nephrotoxicity and pathology. Therefore, renal transporter substrate and inhibition assays are pivotal in drug discovery and development for renally cleared drugs and those that are co-administered with marketed compounds mainly eliminated via the kidney.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Rim/metabolismo , Preparações Farmacêuticas/metabolismo , Testes de Toxicidade/métodos , Bioensaio/métodos , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Humanos , Rim/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA