Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982733

RESUMO

Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.


Assuntos
Edição de Genes , Vitis , Vitis/genética , Melhoramento Vegetal , Sementes/genética , Frutas/genética , Sistemas CRISPR-Cas/genética
2.
BMC Genomics ; 17: 312, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27129581

RESUMO

BACKGROUND: Plant response mechanisms to heat and drought stresses have been considered in strategies for generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene. RESULTS: Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought resulting in improved plant growth and performance under these conditions. This was evidenced by the higher plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55 transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat and drought conditions, suggesting that this altered gene expression may be associated with the improved stress tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint the relevance of specific biological processes for stress responses. CONCLUSIONS: Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic maize are discussed.


Assuntos
Genes myb , Oryza/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Zea mays/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Fenótipo , Plantas Geneticamente Modificadas/genética , Análise de Sequência de RNA , Transcriptoma , Regulação para Cima , Zea mays/genética
3.
Plant Cell Physiol ; 57(10): 2029-2046, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388337

RESUMO

Members of the NAC transcription factor family have been implicated in the regulation of different processes of plant development including senescence. In this study, the role of ANAC032 is analyzed in Arabidopsis thaliana (Col-0). ANAC032 is shown to act as a transcriptional activator and its expression is induced in senescing leaves as well as in dark-treated detached leaves. Analysis of transgenic overexpressors (OXs) and chimeric repressors (SRDXs) of ANAC032 indicates that ANAC032 positively regulates age-dependent and dark-induced leaf senescence. Quantitative real-time PCR analysis showed that ANAC032 regulates leaf senescence mainly through the modulation of expression of the senescence-associated genes AtNYE1, SAG113 and SAUR36/SAG201, which are involved in Chl degradation, and ABA and auxin promotion of senescence, respectively. In addition, ANAC032 expression is induced by a range of oxidative and abiotic stresses. As a result, ANAC032 overexpression lines exhibited enhanced leaf senescence when challenged with different oxidative (3-aminotriazole, fumonisin B1 and high light) and abiotic stress (osmotic and salinity) conditions compared with the wild type. In contrast, ANAC032 SRDX lines displayed the opposite phenotype. ANAC032 transgenic lines showed altered 2,4-D-mediated root tip swelling and root inhibition responses when compared with the wild type. The altered response to auxin, oxidative and abiotic stress treatments in ANAC032 transgenic lines involves differential accumulation of H2O2 compared with the wild type. Taken together, these results indicate that ANAC032 is an important transcription factor that positively regulates age-dependent and stress-induced senescence in A. thaliana by modulating reactive oxygen species production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Estresse Fisiológico , Transativadores/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Clorofila/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/farmacologia , Osmose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Salinidade , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transativadores/genética
4.
BMC Genomics ; 15: 77, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24472600

RESUMO

BACKGROUND: Development of crop varieties with high nitrogen use efficiency (NUE) is crucial for minimizing N loss, reducing environmental pollution and decreasing input cost. Maize is one of the most important crops cultivated worldwide and its productivity is closely linked to the amount of fertilizer used. A survey of the transcriptomes of shoot and root tissues of a maize hybrid line and its two parental inbred lines grown under sufficient and limiting N conditions by mRNA-Seq has been conducted to have a better understanding of how different maize genotypes respond to N limitation. RESULTS: A different set of genes were found to be N-responsive in the three genotypes. Many biological processes important for N metabolism such as the cellular nitrogen compound metabolic process and the cellular amino acid metabolic process were enriched in the N-responsive gene list from the hybrid shoots but not from the parental lines' shoots. Coupled to this, sugar, carbohydrate, monosaccharide, glucose, and sorbitol transport pathways were all up-regulated in the hybrid, but not in the parents under N limitation. Expression patterns also differed between shoots and roots, such as the up-regulation of the cytokinin degradation pathway in the shoots of the hybrid and down-regulation of that pathway in the roots. The change of gene expression under N limitation in the hybrid resembled the parent with the higher NUE trait. The transcript abundances of alleles derived from each parent were estimated using polymorphic sites in mapped reads in the hybrid. While there were allele abundance differences, there was no correlation between these and the expression differences seen between the hybrid and the two parents. CONCLUSIONS: Gene expression in two parental inbreds and the corresponding hybrid line in response to N limitation was surveyed using the mRNA-Seq technology. The data showed that the three genotypes respond very differently to N-limiting conditions, and the hybrid clearly has a unique expression pattern compared to its parents. Our results expand our current understanding of N responses and will help move us forward towards effective strategies to improve NUE and enhance crop production.


Assuntos
Quimera/genética , Genoma de Planta , Nitrogênio/metabolismo , Zea mays/genética , Zea mays/metabolismo , Quimera/crescimento & desenvolvimento , Quimera/metabolismo , Citocininas/metabolismo , Regulação para Baixo , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Transcriptoma , Regulação para Cima , Zea mays/crescimento & desenvolvimento
5.
BMC Genomics ; 15: 1056, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471115

RESUMO

BACKGROUND: Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions. RESULTS: A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. limiting N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing stored vacuolar nitrate when N deficit is perceived, and that the response likely involves phosphorylation signal cascades and transcriptional regulation. CONCLUSIONS: The co-expression network analysis and metabolic profiling performed in rice pinpoint the relevance of signal transduction components and regulation of N mobilization in response to limiting N conditions and deepen our understanding of N responses and N use in crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Nitratos/metabolismo , Oryza/genética , Oryza/metabolismo , Análise por Conglomerados , Biologia Computacional , Epigênese Genética , Perfilação da Expressão Gênica , Metaboloma , Metabolômica , Anotação de Sequência Molecular , Família Multigênica , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Exp Bot ; 65(4): 965-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24420570

RESUMO

The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Biomassa , Metabolismo dos Carboidratos , Proteínas de Transporte de Cátions/metabolismo , Clorofila/metabolismo , Grão Comestível/citologia , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Expressão Gênica , Genes Reporter , Glutamina/metabolismo , Modelos Biológicos , Nitrogênio/metabolismo , Cebolas/citologia , Cebolas/genética , Cebolas/metabolismo , Oryza/citologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Permeabilidade , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Xilema/citologia , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
7.
Plants (Basel) ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674460

RESUMO

The citrus industry loses a significant amount of mandarin fruits either before or shortly after harvesting due to rind disorder. Different citrus cultivars are impacted by a physiological rind disorder that lowers fruit quality and marketability. Although the primary etiology of this condition is unknown, changes in relative humidity (RH) and rind water status can make it worse. The damage is initiated in the fall, especially following rain. It begins with irregular water-soaked areas that develop into dark-brown, necrotic lesions covering large portions of the fruit's surface. The damage is evident in some citrus types such as Satsuma Owari mandarins and other cultivars. In this study, we attempted to understand and control the occurrence of this kind of rind disorder in Satsuma Owari mandarins growing under California conditions. Our data showed that fruit located in the outer part of the canopy suffer more than fruit in the interior canopy. We were able to reduce this damage in Satsuma Owari mandarins by applying 2,4-dichlorophenoxyacetic acid (2,4-D) at 16 milligrams/Liter (mg/L), gibberellic acid (GA3) at 20 mg/L, or Vapor Gard® at 0.5 percent (v/v) at the color break stage. However, GA3 caused a delay in color development by approximately four weeks. GA3-treated fruit changed their color completely four weeks after the control, and the rind damage was at a very low percentage. Delaying rind senescence could be a good strategy to reduce the damage in mandarin orchards. Data showed that in addition to the benefits of the different treatments on preventing rind disorder at harvest, they have some beneficial effects during storage for four weeks either at 0.5 or 7.5 °C.

8.
Plants (Basel) ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38592889

RESUMO

Salinity is one of the substantial threats to plant productivity and could be escorted by other stresses such as heat and drought. It impairs critical biological processes, such as photosynthesis, energy, and water/nutrient acquisition, ultimately leading to cell death when stress intensity becomes uncured. Therefore, plants deploy several proper processes to overcome such hostile circumstances. Grapevine is one of the most important crops worldwide that is relatively salt-tolerant and preferentially cultivated in hot and semi-arid areas. One of the most applicable strategies for sustainable viticulture is using salt-tolerant rootstock such as Ruggeri (RUG). The rootstock showed efficient capacity of photosynthesis, ROS detoxification, and carbohydrate accumulation under salinity. The current study utilized the transcriptome profiling approach to identify the molecular events of RUG throughout a regime of salt stress followed by a recovery procedure. The data showed progressive changes in the transcriptome profiling throughout salinity, underpinning the involvement of a large number of genes in transcriptional reprogramming during stress. Our results established a considerable enrichment of the biological process GO-terms related to salinity adaptation, such as signaling, hormones, photosynthesis, carbohydrates, and ROS homeostasis. Among the battery of molecular/cellular responses launched upon salinity, ROS homeostasis plays the central role of salt adaptation.

9.
PLoS Genet ; 6(9): e1001098, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20838584

RESUMO

The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA) biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI) protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs) in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Secas , Flores/efeitos dos fármacos , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Giberelinas/farmacologia , Proteínas de Homeodomínio/genética , Modelos Biológicos , Proteínas Nucleares/genética , Oryza/efeitos dos fármacos , Oryza/genética , Fenótipo , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética
10.
Front Plant Sci ; 14: 1060377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778682

RESUMO

Red color resulted from anthocyanin pigment, is an essential trait for premium table grape production. Anthocyanin biosynthesis occurs through the flavonoid pathway which includes several enzymatic reactions coded by different genes. The expression of these genes is regulated by different cultural practices, cultivars, environmental conditions, and plant hormones. Recently, we reported that the anthocyanin pathway is regulated by several factors such as light and antioxidant activity. Despite the advances in cultural practices, it is still challenging to produce table grapes with high coloration, especially under the current and expected global climate change in warmer areas such as California. In the current study, we deployed two approaches to improve the accumulation of red pigment in table grapes. The first approach involves improving the expression of critical genes involved in the anthocyanin pathway through hormonal treatments and light manipulation using a reflective ground cover (RGC). The second approach was to reduce the negative effect of heat stress through stimulation of the antioxidant pathway to help remove free radicals. Treatments included ethephon (ET) at 600 mg/L, silicon (Si) at 175 mg/L, and a commercial light-reflective white ground cover (RGC) alone and in various combinations. Treatments were conducted either with or without a combination of cluster-zone leaf removal at veraison (LR) on Flame seedless (Vitis vinifera L.). Data collected in 2019 and 2020 showed that the best treatment to improve berry coloration was using ET in combination with Si and RGC, applied at veraison. Adding the LR to this combination did not improve berry color any further, but rather caused a reduction in color development. RGC without conducting LR at veraison significantly increased the quantity of reflected blue and red lights as well as the red (R) to far-red (FR) ratio (R: FR) around clusters. Results were in accordance with the increase in gene expression of flavonoid-3-O-glucosyltransferase (UFGT), a key gene in the anthocyanin biosynthesis pathway, as well as Peroxidase dismutase (POD). Manipulating the light spectrum and application of silicon in combination with the ethephon treatment could be used in table grape vineyards to improve the ethylene-induced anthocyanin accumulation and coloration.

11.
Front Microbiol ; 14: 1100590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910183

RESUMO

The citrus root and rhizosphere microbiomes have been relatively well described in the literature, especially in the context of Huanglonbing disease. Yet questions addressing the assembly of root microbial endophytes have remained unanswered. In the above ground tree tissues, leaves and stems have been the research focus point, while flush and flower microbiomes, two important tissues in the vegetative and reproductive cycles of the tree, are not well described. In this study, the fungal and bacterial taxa in five biocompartments (bulk soil, rhizosphere, root endosphere, flower and flush) of citrus trees grown in a single California orchard were profiled using an amplicon-based metagenomic Illumina sequencing approach. Trees with no observable signs of abiotic or biotic stresses were sampled for two consecutive years during the floral development phase. The rhizosphere was the most biodiverse compartment compared to bulk soil, root endosphere, flower and flush microbiomes. In addition, the belowground bacteriome was more diverse than the mycobiome. Microbial richness decreased significantly from the root exosphere to the endosphere and was overall low in the above ground tissues. Root endophytic microbial community composition shared strong similarities to the rhizosphere but also contained few taxa from above ground tissues. Our data indicated compartmentalization of the microbiome with distinct profiles between above and below ground microbial communities. However, several taxa were present across all compartments suggesting the existence of a core citrus microbiota. These findings highlight key microbial taxa that could be engineered as biopesticides and biofertilizers for citriculture.

12.
Front Plant Sci ; 14: 1263354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822340

RESUMO

Citrus fruit's appearance is the primary criterion used to assess its quality for the fresh market, hence the rind's condition is a crucial quality trait. Pre-harvest rind disorder is one of the major physiological problems in mandarins. The disorder occurs right before harvest following rain events in some Mandarin varieties. Despite the economic damage caused by this kind of disorder, very limited information is available about the molecular mechanisms underlying the occurrence of this disorder. In the present study, we evaluated the primary metabolites, antioxidants, and hormones associated with the pre-harvest rind disorder in Mandarins. The study was carried out using ten-year-old 'Owari' Satsuma mandarin trees grafted on 'Carrizo' rootstock and grown in a commercial orchard in San Joaquin Valley, California, USA. Samples were collected from healthy tissue of healthy fruit (HF_HT), healthy tissue of damaged fruit (DF_HT), and damaged tissue of damaged fruit (DF_DT). Damaged fruit (DF_HT and DF_DT) showed lower cellulose concentrations than healthy fruit tissues (HF_HT), however, had similar contents of pectin and hemicellulose. The antioxidant activities showed no significant difference in all paired comparisons between samples as expressed in the malondialdehyde (MDA) content. However, DF_DT had a higher H2O2 content compared to HF_HT, but DF_HT had a similar content to that of HF_HT. Furthermore, peroxidase (POD) and polyphenol oxidase (PPO) activities were increased in DF_DT compared to HF_HT (P = 0.0294) and DF_HT (P = 0.0044), respectively. Targeted metabolomics analysis revealed that a total of 76 metabolites were identified in Satsuma rind tissues, and the relative concentrations of 43 metabolites were significantly different across studied samples. The hormonal analysis showed the involvement of jasmonate O-methyltransferase, jasmonic acid-amido synthetase JAR1-like, and JA-isoleucine may key role in causing the rind disorder in mandarins. In addition, the damaged fruit tissues have a higher level of jasmonic acid (JA), 12-oxo-phytodienoic acid, and JA-isoleucine than undamaged tissue.

13.
Front Plant Sci ; 14: 1271251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965000

RESUMO

Scarlet Royal, a mid-season ripening table grape, is one of the popular red grape varieties in California. However, its berries develop an undesirable astringent taste under certain conditions. Among the various factors contributing to the degradation of berry attributes, the levels and compositions of polyphenols play a fundamental role in defining berry quality and sensory characteristics. To comprehend the underlying mechanism of astringency development, Scarlet Royal berries with non-astringent attributes at the V7 vineyard were compared to astringent ones at the V9 vineyard. Biochemical analysis revealed that the divergence in berry astringency stemmed from alterations in its polyphenol composition, particularly tannins, during the late ripening stage at the V9 vineyard. Furthermore, transcriptomic profiling of berries positively associated nineteen flavonoid/proanthocyanidins (PAs) structural genes with the accumulation of PAs in V9 berries. The identification of these genes holds significance for table grape genetic improvement programs. At a practical level, the correlation between the taste panel and tannin content revealed a threshold level of tannins causing an astringent taste at approximately 400 mg/L. Additionally, berry astringency at the V9 vineyard was linked to a lower number of clusters and yield during the two study seasons, 2016 and 2017. Furthermore, petiole nutrient analysis at bloom showed differences in nutrient levels between the two vineyards, including higher levels of nitrogen and potassium in V9 vines compared to V7. It's worth noting that V9 berries at harvest displayed a lower level of total soluble solids and higher titratable acidity compared to V7 berries. In conclusion, our results indicate that the accumulation of tannins in berries during the ripening process results in a reduction in their red color intensity but significantly increases the astringency taste, thereby degrading the berry quality attributes. This study also highlights the association of high nitrogen nutrient levels and a lower crop load with berry astringency in table grapes, paving the way for further research in this area.

14.
Plants (Basel) ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765411

RESUMO

Like other plant stresses, salinity is a central agricultural problem, mainly in arid or semi-arid regions. Therefore, salt-adapted plants have evolved several adaptation strategies to counteract salt-related events, such as photosynthesis inhibition, metabolic toxicity, and reactive oxygen species (ROS) formation. European grapes are usually grafted onto salt-tolerant rootstocks as a cultivation practice to alleviate salinity-dependent damage. In the current study, two grape rootstocks, 140 Ruggeri (RUG) and Millardet et de Grasset 420A (MGT), were utilized to evaluate the diversity of their salinity adaptation strategies. The results showed that RUG is able to maintain higher levels of the photosynthetic pigments (Chl-T, Chl-a, and Chl-b) under salt stress, and hence accumulates higher levels of total soluble sugars (TSS), monosaccharides, and disaccharides compared with the MGT rootstock. Moreover, it was revealed that the RUG rootstock maintains and/or increases the enzymatic activities of catalase, GPX, and SOD under salinity, giving it a more efficient ROS detoxification machinery under stress.

15.
Nature ; 439(7074): 290-4, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16421562

RESUMO

The phytohormone abscisic acid (ABA) regulates various physiological processes in plants. The molecular mechanisms by which this is achieved are not fully understood. Genetic approaches have characterized several downstream components of ABA signalling, but a receptor for ABA has remained elusive. Although studies indicate that several ABA response genes encode RNA-binding or RNA-processing proteins, none has been found to be functional in binding ABA. Here we show that FCA, an RNA-binding protein involved in flowering, binds ABA with high affinity in an interaction that is stereospecific and follows receptor kinetics. The interaction between FCA and ABA has molecular effects on downstream events in the autonomous floral pathway and, consequently, on the ability of the plant to undergo transition to flowering. We further show that ABA binding exerts a direct control on the FCA-mediated processing of precursor messenger RNA. Our results indicate that FCA is an ABA receptor involved in RNA metabolism and in controlling flowering time.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/efeitos dos fármacos , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/genética
16.
Plants (Basel) ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559612

RESUMO

Phytohormones play an essential role in enhancing plant tolerance by responding to abiotic stresses, such as nutrient deficiency, drought, high temperature, and light stress. Strigolactones (SLs) are carotenoid derivatives that occur naturally in plants and are defined as novel phytohormones that regulate plant metabolism, growth, and development. Strigolactone assists plants in the acquisition of defensive characteristics against drought stress by initiating physiological responses and mediating the interaction with soil microorganisms. Nutrient deficiency is an important abiotic stress factor, hence, plants perform many strategies to survive against nutrient deficiency, such as enhancing the efficiency of nutrient uptake and forming beneficial relationships with microorganisms. Strigolactone attracts various microorganisms and provides the roots with essential elements, including nitrogen and phosphorus. Among these advantageous microorganisms are arbuscular mycorrhiza fungi (AMF), which regulate plant metabolic activities through phosphorus providing in roots. Bacterial nodulations are also nitrogen-fixing microorganisms found in plant roots. This symbiotic relationship is maintained as the plant provides organic molecules, produced in the leaves, that the bacteria could otherwise not independently generate. Related stresses, such as light stress and high-temperature stress, could be affected directly or indirectly by strigolactone. However, the messengers of these processes are unknown. The most prominent connector messengers have been identified upon the discovery of SLs and the understanding of their hormonal effect. In addition to attracting microorganisms, these groups of phytohormones affect photosynthesis, bridge other phytohormones, induce metabolic compounds. In this article, we highlighted the brief information available on SLs as a phytohormone group regarding their common related effects. In addition, we reviewed the status and described the application of SLs and plant response to abiotic stresses. This allowed us to comprehend plants' communication with the ecological microbiome as well as the strategies plants use to survive under various stresses. Furthermore, we identify and classify the SLs that play a role in stress resistance since many ecological microbiomes are unexplained.

17.
Front Plant Sci ; 12: 713277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484275

RESUMO

Deficit irrigation (DI) is an irrigation scheduling technique that is used in grapes to improve red color development; however, results are not always satisfactory in table grapes. The red color in grapes is mainly due to the plant pigment anthocyanin. In the present study, the anthocyanin biosynthesis in Scarlet Royal grapes (Vitis vinifera L.) grown in the San Joaquin and Coachella Valleys, and subjected to two different DI strategies was investigated. The objective of this study was to identify potential regulatory factors that may lead to potential treatments to improve red color in table grapes, especially under warm climate conditions. In both locations, DI induced the expression of several genes involved in three major pathways that control the red color in table grapes: anthocyanin biosynthesis, hormone biosynthesis, and antioxidant system. DI at veraison induced anthocyanin accumulation and enhanced red color in berries at harvest time. However, anthocyanin accumulation was lower at the Coachella Valley compared to the San Joaquin Valley. The lower level of anthocyanin was associated with lower expression of critical genes involved in anthocyanin biosynthesis, such as flavonoid-3-O-glucosyltransferase (UFGT), myb-related regulatory gene (R2R3-MYB) (MYBA1), basic helix-loop-helix (bHLH) (MYCA1) and the tryptophan-aspartic acid repeat (WDR or WD40) proteins (WDR1). Further, gene expression analysis revealed the association of ABA biosynthesis gene 9-cis-epoxycarotenoid dioxygenase (NCED1), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO3), and the gibberellic acid (GA) catabolic gene GA2 oxidase (GA2ox1) in the induction of anthocyanin biosynthesis. An increase in the chalcone synthase gene (CHS2) was observed in response to DI treatments in both sites. However, CHS2 expression was higher in Coachella Valley after ending the DI treatment, suggesting the involvement of environmental stress in elevating its transcripts. This data was also supported by the lower level of antioxidant gene expression and enzyme activities in the Coachella Valley compared to the San Joaquin Valley. The present data suggested that the lack of grape red coloration could partially be due to the lower level of antioxidant activities resulting in accelerated anthocyanin degradation and impaired anthocyanin biosynthesis. It seems that under challenging warmer conditions, several factors are required to optimize anthocyanin accumulation via DI, including an active antioxidant system, proper light perception, and hormonal balance.

18.
Plants (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202840

RESUMO

Producing high-quality table grapes is becoming a challenge in the warmer area of the world due to the global increase in temperature, which negatively affects anthocyanin biosynthesis and other fruit quality attributes. Nanotechnology is a growing field that can be a very useful tool to improve crop productivity and sustainability. The red color is one of the major fruit quality parameters that determine table grape marketability. This study aimed to investigate the role of the zinc element in improving the marketable characteristics of Crimson seedless (Vitis vinifera L.) table grape berries i.e., color, firmness, total soluble solids and sugars; besides its role in activating PAL and SOD enzymatic systems. Additionally, this paper investigated the additive advantages of zinc when applied in nanometric form. Five concentrations of zinc oxide nanoparticles, ZnO NPs (0, 25, 50, 100 and 250 ppm), were compared to zinc oxide in mineral form at a concentration of 250 ppm to investigate their effects on the marketable characteristics of Crimson seedless grape cultivar. The treatments were applied as foliar spray on three-year-old Crimson seedless vines grafted on Richter 110 rootstock grown in one of the major table grape production area in Egypt. The experiment was arranged in completely randomized block design and each vine was sprayed with five letters of the solution. The use of the lowest concentration (25 ppm) of ZnO NPs achieved the highest significant enzyme activity (PAL and SOD). Moreover, the T.S.S, sugars and anthocyanin content in berries increased significantly in association of decreasing acidity. On the other hand, the use of a 50 ppm concentration led to an increase in fruit firmness. Collectively, our data showed that 25 ppm of zinc nanoparticles improved PAL and SOD enzymes activity, improved red coloration in table grape and was more effective than the 250 ppm zinc oxide mineral form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA