RESUMO
We aimed to determine the potential value of panel-based pharmacogenetic (PGx) testing in patients with chronic pain or gastroesophageal reflux disease (GERD) who underwent single-gene PGx testing to guide opioid or proton pump inhibitor (PPI) therapy, respectively. Of 448 patients included (chronic pain, n = 337; GERD, n = 111), mean age was 57 years, 68% were female, and 73% were white. Excluding opiates for the pain cohort and PPIs for the GERD cohort, 76.6% of patients with pain and 71.2% with GERD were prescribed at least one additional medication with a high level of PGx evidence, most commonly ondansetron or selective serotonin reuptake inhibitors. The most common genes that could inform PGx drug prescribing were CYP2C19, CYP2D6, CYP2C9, and SLCO1B1. Our findings suggest that patients with chronic pain or GERD are commonly prescribed drugs with a high level of evidence for a PGx-guided approach, supporting panel-based testing in these populations.
Assuntos
Analgésicos Opioides/uso terapêutico , Dor Crônica/tratamento farmacológico , Refluxo Gastroesofágico/tratamento farmacológico , Testes Farmacogenômicos , Variantes Farmacogenômicos , Medicina de Precisão , Inibidores da Bomba de Prótons/uso terapêutico , Adulto , Idoso , Analgésicos Opioides/efeitos adversos , Dor Crônica/diagnóstico , Dor Crônica/genética , Tomada de Decisão Clínica , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2D6/genética , Feminino , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/genética , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Pessoa de Meia-Idade , Farmacogenética , Ensaios Clínicos Pragmáticos como Assunto , Valor Preditivo dos Testes , Inibidores da Bomba de Prótons/efeitos adversosRESUMO
PURPOSE: The increased availability of clinical pharmacogenetic (PGx) guidelines and decreasing costs for genetic testing have slowly led to increased utilization of PGx testing in clinical practice. Pre-emptive PGx testing, where testing is performed in advance of drug prescribing, is one means to ensure results are available at the time of prescribing decisions. However, the most efficient and effective methods to clinically implement this strategy remain unclear. METHODS: In this report, we compare and contrast implementation strategies for pre-emptive PGx testing by 15 early-adopter institutions. We surveyed these groups, collecting data on testing approaches, team composition, and workflow dynamics, in addition to estimated third-party reimbursement rates. RESULTS: We found that while pre-emptive PGx testing models varied across sites, institutions shared several commonalities, including methods to identify patients eligible for testing, involvement of a precision medicine clinical team in program leadership, and the implementation of pharmacogenes with Clinical Pharmacogenetics Implementation Consortium guidelines available. Finally, while reimbursement rate data were difficult to obtain, the data available suggested that reimbursement rates for pre-emptive PGx testing remain low. CONCLUSION: These findings should inform the establishment of future implementation efforts at institutions considering a pre-emptive PGx testing program.
Assuntos
Farmacogenética , Testes Farmacogenômicos , Prescrições de Medicamentos , Testes Genéticos , Humanos , Farmacogenética/métodos , Medicina de Precisão/métodosRESUMO
BACKGROUND: Despite its approval in 1953, hydralazine hydrochloride continues to be used in the management of resistant hypertension, a condition frequently managed by nephrologists and other clinicians. Hydralazine hydrochloride undergoes metabolism by the N-acetyltransferase 2 (NAT2) enzyme. NAT2 is highly polymorphic as approximately 50% of the general population are slow acetylators. In this review, we first evaluate the link between NAT2 genotype and phenotype. We then assess the evidence available for genotype-guided therapy of hydralazine, specifically addressing associations of NAT2 acetylator status with hydralazine pharmacokinetics, antihypertensive efficacy, and toxicity. SUMMARY: There is a critical need to use hydralazine in some patients with resistant hypertension. Available evidence supports a significant link between genotype and NAT2 enzyme activity as 29 studies were identified with an overall concordance between genotype and phenotype of 92%. The literature also supports an association between acetylator status and hydralazine concentration, as fourteen of fifteen identified studies revealed significant relationships with a consistent direction of effect. Although fewer studies are available to directly link acetylator status with hydralazine antihypertensive efficacy, the evidence from this smaller set of studies is significant in 7 of 9 studies identified. Finally, 5 studies were identified which support the association of acetylator status with hydralazine-induced lupus. Clinicians should maintain vigilance when prescribing maximum doses of hydralazine. Key Messages: NAT2 slow acetylator status predicts increased hydralazine levels, which may lead to increased efficacy and adverse effects. Caution should be exercised in slow acetylators with total daily hydralazine doses of 200 mg or more. Fast acetylators are at risk for inefficacy at lower doses of hydralazine. With appropriate guidance on the usage of NAT2 genotype, clinicians can adopt a personalized approach to hydralazine dosing and prescription, enabling more efficient and safe treatment of resistant hypertension.
Assuntos
Anti-Hipertensivos/uso terapêutico , Arilamina N-Acetiltransferase/genética , Hidralazina/uso terapêutico , Hipertensão/tratamento farmacológico , Medicina de Precisão/métodos , Anti-Hipertensivos/farmacocinética , Arilamina N-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Humanos , Hidralazina/farmacocinética , Hipertensão/genética , Nefrologia/métodos , Nefrologia/normas , Testes Farmacogenômicos/normas , Variantes Farmacogenômicos , Guias de Prática Clínica como Assunto , Medicina de Precisão/normas , Resultado do TratamentoRESUMO
The University of Florida Health conducted a pragmatic implementation of a pharmacogenetics (PGx) panel-based test to guide medications used for supportive care prescribed to patients undergoing chemotherapy. The implementation was in the context of a pragmatic clinical trial for patients with non-hematologic cancers being treated with chemotherapy. Patients were randomized to either the intervention arm or control arm and received PGx testing immediately or at the end of the study, respectively. Patients completed the MD Anderson Symptom Inventory (MDASI) to assess quality of life (QoL). A total of 150 patients received PGx testing and enrolled in the study. Clinical decision support and implementation infrastructure were developed. While the study was originally planned for 500 patients, we were underpowered in our sample of 150 patients to test differences in the patient-reported MDASI scores. We did observed a high completion rate (92%) of the questionnaires; however, there were few medication changes (n = 6 in the intervention arm) based on PGx test results. Despite this, we learned several lessons through this pragmatic implementation of a PGx panel-based test in an outpatient oncology setting. Most notably, patients were less willing to undergo PGx testing if the cost of the test exceeded $100. In addition, to enhance PGx implementation success, reoccurring provider education is necessary, clinical decision support needs to appear in a more conducive way to fit in with oncologists' workflow, and PGx test results need to be available earlier in treatment planning.
Assuntos
Antineoplásicos , Neoplasias , Testes Farmacogenômicos , Qualidade de Vida , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/genética , Testes Farmacogenômicos/economia , Testes Farmacogenômicos/estatística & dados numéricos , Adulto , Idoso , Antineoplásicos/uso terapêutico , Oncologia/métodos , Sistemas de Apoio a Decisões Clínicas , FarmacogenéticaRESUMO
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with development of acute hemolytic anemia in the setting of oxidative stress, which can be caused by medication exposure. Regulatory agencies worldwide warn against the use of certain medications in persons with G6PD deficiency, but in many cases, this information is conflicting, and the clinical evidence is sparse. This guideline provides information on using G6PD genotype as part of the diagnosis of G6PD deficiency and classifies medications that have been previously implicated as unsafe in individuals with G6PD deficiency by one or more sources. We classify these medications as high, medium, or low to no risk based on a systematic review of the published evidence of the gene-drug associations and regulatory warnings. In patients with G6PD deficiency, high-risk medications should be avoided, medium-risk medications should be used with caution, and low-to-no risk medications can be used with standard precautions, without regard to G6PD phenotype. This new document replaces the prior Clinical Pharmacogenetics Implementation Consortium guideline for rasburicase therapy in the context of G6PD genotype (updates at: www.cpicpgx.org).
Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Farmacogenética , Hemólise , GenótipoRESUMO
Neurodevelopmental disorders have steadily increased in incidence in the United States. Over the past decade, there have been significant changes in clinical diagnoses and treatments some of which are due to the increasing adoption of pharmacogenomics (PGx) by clinicians. In this pilot study, a multidisciplinary team at the Arkansas Children's Hospital North West consulted on 27 patients referred for difficult-to-manage neurodevelopmental and/or neurobehavioral disorders. The 27 patients were evaluated by the team using records review, team discussion, and pharmacogenetic testing. OneOme RightMed® (Minneapolis, MN, USA) and the Arkansas Children's Hospital comprehensive PGx test were used for drug prescribing guidance. Of the 27 patients' predicted phenotypes, the normal metabolizer was 11 (40.8%) for CYP2C19 and 16 (59.3%) for CYP2D6. For the neurodevelopmental disorders, the most common comorbid conditions included attention-deficit hyperactivity disorder (66.7%), anxiety disorder (59.3%), and autism (40.7%). Following the team assessment and PGx testing, 66.7% of the patients had actionable medication recommendations. This included continuing current therapy, suggesting an appropriate alternative medication, starting a new therapy, or adding adjunct therapy (based on their current medication use). Moreover, 25.9% of patients phenoconverted to a CYP2D6 poor metabolizer. This retrospective chart review pilot study highlights the value of a multidisciplinary treatment approach to deliver precision healthcare by improving physician clinical decisions and potentially impacting patient outcomes. It also shows the feasibility to implement PGx testing in neurodevelopmental/neurobehavioral disorders.
RESUMO
BACKGROUND: Despite the increased demand for pharmacogenetic (PGx) testing to guide antidepressant use, little is known about how to implement testing in clinical practice. Best-worst scaling (BWS) is a stated preferences technique for determining the relative importance of alternative scenarios and is increasingly being used as a healthcare assessment tool, with potential applications in implementation research. We conducted a BWS experiment to evaluate the relative importance of implementation factors for PGx testing to guide antidepressant use. METHODS: We surveyed 17 healthcare organizations that either had implemented or were in the process of implementing PGx testing for antidepressants. The survey included a BWS experiment to evaluate the relative importance of Consolidated Framework for Implementation Research (CFIR) constructs from the perspective of implementing sites. RESULTS: Participating sites varied on their PGx testing platform and methods for returning recommendations to providers and patients, but they were consistent in ranking several CFIR constructs as most important for implementation: patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and identification of champions. CONCLUSIONS: This study demonstrates the feasibility of using choice experiments to systematically evaluate the relative importance of implementation determinants from the perspective of implementing organizations. BWS findings can inform other organizations interested in implementing PGx testing for mental health. Further, this study demonstrates the application of BWS to PGx, the findings of which may be used by other organizations to inform implementation of PGx testing for mental health disorders.
RESUMO
There is growing interest in utilizing pharmacogenetic (PGx) testing to guide antidepressant use, but there is lack of clarity on how to implement testing into clinical practice. We administered two surveys at 17 sites that had implemented or were in the process of implementing PGx testing for antidepressants. Survey 1 collected data on the process and logistics of testing. Survey 2 asked sites to rank the importance of Consolidated Framework for Implementation Research (CFIR) constructs using best-worst scaling choice experiments. Of the 17 sites, 13 had implemented testing and four were in the planning stage. Thirteen offered testing in the outpatient setting, and nine in both outpatient/inpatient settings. PGx tests were mainly ordered by psychiatry (92%) and primary care (69%) providers. CYP2C19 and CYP2D6 were the most commonly tested genes. The justification for antidepressants selected for PGx guidance was based on Clinical Pharmacogenetics Implementation Consortium guidelines (94%) and US Food and Drug Administration (FDA; 75.6%) guidance. Both institutional (53%) and commercial laboratories (53%) were used for testing. Sites varied on the methods for returning results to providers and patients. Sites were consistent in ranking CFIR constructs and identified patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and the identification of champions as most important for implementation. Sites deployed similar implementation strategies and measured similar outcomes. The process of implementing PGx testing to guide antidepressant therapy varied across sites, but key drivers for successful implementation were similar and may help guide other institutions interested in providing PGx-guided pharmacotherapy for antidepressant management.
Assuntos
Antidepressivos/uso terapêutico , Farmacogenética , Testes Farmacogenômicos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Depressão/tratamento farmacológico , Humanos , Farmacogenética/métodosRESUMO
CYP2D6 genotype is increasingly being integrated into practice to guide prescribing of certain medications. The CYP2D6 drug metabolizing enzyme is susceptible to inhibition by concomitant drugs, which can lead to a clinical phenotype that is different from the genotype-based phenotype, a process referred to as phenoconversion. Phenoconversion is highly prevalent but not widely integrated into practice because of either limited experience on how to integrate or lack of knowledge that it has occurred. We built a calculator tool to help clinicians integrate a standardized method of assessing CYP2D6 phenoconversion into practice. During tool-building, we identified several clinical factors that need to be considered when implementing CYP2D6 phenoconversion into clinical practice. This tutorial shares the steps that the University of Florida Health Precision Medicine Program took to build the calculator tool and identified clinical factors to consider when implementing CYP2D6 phenoconversion in clinical practice.
Assuntos
Citocromo P-450 CYP2D6/genética , Genótipo , Humanos , Inativação Metabólica/genética , Farmacogenética/métodos , Fenótipo , Medicina de Precisão/métodosRESUMO
A formal assessment of pharmacogenomics clinical decision support (PGx-CDS) by providers is lacking in the literature. The objective of this study was to evaluate the usability of PGx-CDS tools that have been implemented in a healthcare setting. We enrolled ten prescribing healthcare providers and had them complete a 60-min usability session, which included interacting with two PGx-CDS scenarios using the "Think Aloud" technique, as well as completing the Computer System Usability Questionnaire (CSUQ). Providers reported positive comments, negative comments, and suggestions for the two PGx-CDS during the usability testing. Most provider comments were in favor of the current PGx-CDS design, with the exception of how the genotype and phenotype information is displayed. The mean CSUQ score for the PGx-CDS overall satisfaction was 6.3 ± 0.95, with seven strongly agreeing and one strongly disagreeing for overall satisfaction. The implemented PGx-CDS at our institution was well received by prescribing healthcare providers. The feedback collected from the session will guide future PGx-CDS designs for our healthcare system and provide a framework for other institutions implementing PGx-CDS.