Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Dis Model Mech ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086326

RESUMO

The salivary glands are often damaged during head and neck cancer radiotherapy. This results in chronic dry mouth, which adversely affects quality of life and for which there is no long-term cure. Mouse models of salivary gland injury are routinely used in regenerative research. However, there is no clear consensus on the radiation regime required to cause injury. Here, we analysed three regimes of γ-irradiation of the submandibular salivary gland. Transcriptional analysis, immunofluorescence and flow cytometry was used to profile DNA damage, gland architecture and immune cell changes 3 days after single doses of 10 or 15 Gy or three doses of 5 Gy. Irrespective of the regime, radiation induced comparable levels of DNA damage, cell cycle arrest, loss of glandular architecture, increased pro-inflammatory cytokines and a reduction in tissue-resident macrophages, relative to those observed in non-irradiated submandibular glands. Given these data, coupled with the fact that repeated anaesthetic can negatively affect animal welfare and interfere with saliva secretion, we conclude that a single dose of 10 Gy irradiation is the most refined method of inducing acute salivary gland injury in a mouse model.


Assuntos
Dano ao DNA , Fracionamento da Dose de Radiação , Camundongos Endogâmicos C57BL , Glândulas Salivares , Animais , Glândulas Salivares/efeitos da radiação , Glândulas Salivares/patologia , Glândula Submandibular/efeitos da radiação , Glândula Submandibular/patologia , Raios gama/efeitos adversos , Citocinas/metabolismo , Camundongos , Masculino , Macrófagos/efeitos da radiação , Macrófagos/patologia , Macrófagos/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino
2.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047566

RESUMO

Salivary gland regeneration is a complex process involving intricate interactions among various cell types. Recent studies have shed light on the pivotal role played by macrophages in driving the regenerative response. However, our understanding of this critical role has primarily relied on static views obtained from fixed tissue biopsies. To overcome this limitation and gain insights into these interactions in real time, this study outlines a comprehensive protocol for culturing salivary gland tissue ex vivo and capturing live images of cell migration. The protocol involves several key steps: First, mouse submandibular salivary gland tissue is carefully sliced using a vibratome and then cultured at an air-liquid interface. These slices can be intentionally injured, for instance, through exposure to radiation, to induce cellular damage and trigger the regenerative response. To track specific cells of interest, they can be endogenously labeled, such as by utilizing salivary gland tissue collected from genetically modified mice where a particular protein is marked with green fluorescent protein (GFP). Alternatively, fluorescently-conjugated antibodies can be employed to stain cells expressing specific cell surface markers of interest. Once prepared, the salivary gland slices are subjected to live imaging using a high-content confocal imaging system over a duration of 12 h, with images captured at 15 min intervals. The resulting images are then compiled to create a movie, which can subsequently be analyzed to extract valuable cell behavior parameters. This innovative method provides researchers with a powerful tool to investigate and better understand macrophage interactions within the salivary gland following injury, thereby advancing our knowledge of the regenerative processes at play in this dynamic biological context.


Assuntos
Cabeça , Glândulas Salivares , Camundongos , Animais , Glândulas Salivares/patologia , Comunicação Celular , Glândula Submandibular
3.
Sci Immunol ; 8(89): eadd4374, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922341

RESUMO

The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Xerostomia , Humanos , Macrófagos , Qualidade de Vida , Glândulas Salivares , Xerostomia/terapia
4.
Open Biol ; 10(12): 200309, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33352064

RESUMO

Over the last decade, our understanding of the physiological role of senescent cells has drastically evolved, from merely indicators of cellular stress and ageing to having a central role in regeneration and repair. Increasingly, studies have identified senescent cells and the senescence-associated secretory phenotype (SASP) as being critical in the regenerative process following injury; however, the timing and context at which the senescence programme is activated can lead to distinct outcomes. For example, a transient induction of senescent cells followed by rapid clearance at the early stages following injury promotes repair, while the long-term accumulation of senescent cells impairs tissue function and can lead to organ failure. A key role of the SASP is the recruitment of immune cells to the site of injury and the subsequent elimination of senescent cells. Among these cell types are macrophages, which have well-documented regulatory roles in all stages of regeneration and repair. However, while the role of senescent cells and macrophages in this process is starting to be explored, the specific interactions between these cell types and how these are important in the different stages of injury/reparative response still require further investigation. In this review, we consider the current literature regarding the interaction of these cell types, how their cooperation is important for regeneration and repair, and what questions remain to be answered to advance the field.


Assuntos
Comunicação Celular , Senescência Celular , Macrófagos/fisiologia , Animais , Biomarcadores , Comunicação Celular/genética , Comunicação Celular/imunologia , Senescência Celular/genética , Senescência Celular/imunologia , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Sistema Imunitário , Especificidade de Órgãos , Fenótipo , Regeneração , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA