Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328189

RESUMO

The influence of the metastasis promoting proteins mutant p53 (mtp53) and MDM2 on Cancer Persistent Repair (CPR) to promote cancer cell survival is understudied. Interactions between the DNA repair choice protein 53BP1 and wild type tumor suppressor protein p53 (wtp53) regulates cell cycle control. Cancer cells often express elevated levels of transcriptionally inactive missense mutant p53 (mtp53) that interacts with MDM2 and MDM4/MDMX (herein called MDMX). The ability of mtp53 to maintain a 53BP1 interaction while in the context of interactions with MDM2 and MDMX has not been described. We asked if MDM2 regulates chromatin-based phosphorylation events in the context of mtp53 by comparing the chromatin of T47D breast cancer cells with and without MDM2 in a phospho-peptide stable isotope labeling in cell culture (SILAC) screen. We found reduced phospho-53BP1 chromatin association, which we confirmed by chromatin fractionation and immunofluorescence in multiple breast cancer cell lines. We used the Proximity Ligation Assay (PLA) in breast cancer cell lines and detected 53BP1 in close proximity to mtp53, MDM2, and the DNA repair protein MDC1. Through disruption of the mtp53-MDM2 interaction, by either Nutlin 3a or a mtp53 R273H C-terminal deletion, we uncovered that mtp53 was required for MDM2-53BP1 interaction foci. Our data suggests that mtp53 works with MDM2 and 53BP1 to promote CPR and cell survival.

2.
Mol Cancer Res ; 20(12): 1799-1810, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36074101

RESUMO

The TP53 gene is mutated in 80% of triple-negative breast cancers. Cells that harbor the hot-spot p53 gene mutation R273H produce an oncogenic mutant p53 (mtp53) that enhances cell proliferative and metastatic properties. The enhanced activities of mtp53 are collectively referred to as gain-of-function (GOF), and may include transcription-independent chromatin-based activities shared with wild-type p53 (wtp53) such as association with replicating DNA and DNA replication associated proteins like PARP1. However, how mtp53 upregulates cell proliferation is not well understood. wtp53 interacts with PARP1 using a portion of its C-terminus. The wtp53 oligomerization and far C-terminal domain (CTD) located within the C-terminus constitute putative GOF-associated domains, because mtp53 R273H expressing breast cancer cells lacking both domains manifest slow proliferation phenotypes. We addressed if the C-terminal region of mtp53 R273H is important for chromatin interaction and breast cancer cell proliferation using CRISPR-Cas9 mutated MDA-MB-468 cells endogenously expressing mtp53 R273H C-terminal deleted isoforms (R273HΔ381-388 and R273HΔ347-393). The mtp53 R273HΔ347-393 lacks the CTD and a portion of the oligomerization domain. We observed that cells harboring mtp53 R273HΔ347-393 (compared with mtp53 R273H full-length) manifest a significant reduction in chromatin, PARP1, poly-ADP-ribose (PAR), and replicating DNA binding. These cells also exhibited impaired response to hydroxyurea replicative stress, decreased sensitivity to the PARP-trapping drug combination temozolomide-talazoparib, and increased phosphorylated 53BP1 foci, suggesting reduced Okazaki fragment processing. IMPLICATIONS: The C-terminal region of mtp53 confers GOF activity that mediates mtp53-PARP1 and PAR interactions assisting DNA replication, thus implicating new biomarkers for PARP inhibitor therapy.


Assuntos
Poli Adenosina Difosfato Ribose , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Genes p53 , Mutação com Ganho de Função , Poli(ADP-Ribose) Polimerase-1 , Cromatina
3.
Oncotarget ; 12(12): 1128-1146, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34136083

RESUMO

We recently documented that gain-of-function (GOF) mutant p53 (mtp53) R273H in triple negative breast cancer (TNBC) cells interacts with replicating DNA and PARP1. The missense R273H GOF mtp53 has a mutated central DNA binding domain that renders it unable to bind specifically to DNA, but maintains the capacity to interact tightly with chromatin. Both the C-terminal domain (CTD) and oligomerization domain (OD) of GOF mtp53 proteins are intact and it is unclear whether these regions of mtp53 are responsible for chromatin-based DNA replication activities. We generated MDA-MB-468 cells with CRISPR-Cas9 edited versions of the CTD and OD regions of mtp53 R273H. These included a frame-shift mtp53 R273Hfs387, which depleted mtp53 protein expression; mtp53 R273HΔ381-388, which had a small deletion within the CTD; and mtp53 R273HΔ347-393, which had both the OD and CTD regions truncated. The mtp53 R273HΔ347-393 existed exclusively as monomers and disrupted the chromatin interaction of mtp53 R273H. The CRISPR variants proliferated more slowly than the parental cells and mt53 R273Hfs387 showed the most extreme phenotype. We uncovered that after thymidine-induced G1/S synchronization, but not hydroxyurea or aphidicholin, R273Hfs387 cells displayed impairment of S-phase progression while both R273HΔ347-393 and R273HΔ381-388 displayed only moderate impairment. Moreover, reduced chromatin interaction of MCM2 and PCNA in mtp53 depleted R273Hfs387 cells post thymidine-synchronization revealed delayed kinetics of replisome assembly underscoring the slow S-phase progression. Taken together our findings show that the CTD and OD domains of mtp53 R273H play critical roles in mutant p53 GOF that pertain to processes associated with DNA replication.

4.
Front Cell Dev Biol ; 9: 772315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881245

RESUMO

The TP53 gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the C-terminal oligomerization domain (OD). These types of mutations are found in patients with the rare inherited cancer predisposition disorder called Li-Fraumeni syndrome. We previously found that mutant p53 (mtp53) R273H associates with replicating DNA and promotes the chromatin association of replication-associated proteins mini-chromosome maintenance 2 (MCM2), and poly ADP-ribose polymerase 1(PARP1). Herein, we created dual mutants in order to test if the oligomerization state of mtp53 R273H played a role in chromatin binding oncogenic gain-of-function (GOF) activities. We used site-directed mutagenesis to introduce point mutations in the OD in wild-type p53 (wtp53), and mtp53 R273H expressing plasmids. The glutaraldehyde crosslinking assay revealed that both wtp53 and mtp53 R273H formed predominantly tetramers, while the single OD mutant A347D, and the dual mtp53 R273H-A347D, formed predominantly dimers. The R337C, L344P, mtp53 R273H-R337C, and mtp53 R273H-L344P proteins formed predominantly monomers. Wtp53 was able to activate the cyclin-dependent kinase gene p21/waf and the p53 feedback regulator MDM2. As expected, the transactivation activity was lost for all the single mutants, as well as the mtp53 R273H-dual mutants. Importantly, mtp53 R273H and the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P were able to interact with chromatin. Additionally, the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P, maintained strong interactions with MCM2 and PARP1. Our findings suggest that while mtp53 R273H can form tetramers, tetramer formation is not required for the GOF associated chromatin interactions.

5.
Cancer Res ; 80(3): 394-405, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776133

RESUMO

Over 80% of triple-negative breast cancers (TNBC) express mutant p53 (mtp53) and some contain oncogenic gain-of-function (GOF) p53. We previously reported that GOF mtp53 R273H upregulates the chromatin association of mini chromosome maintenance (MCM) proteins MCM2-7 and PARP and named this the mtp53-PARP-MCM axis. In this study, we dissected the function and association between mtp53 and PARP using a number of different cell lines, patient-derived xenografts (PDX), tissue microarrays (TMA), and The Cancer Genome Atlas (TCGA) database. Endogenous mtp53 R273H and exogenously expressed R273H and R248W bound to nascent 5-ethynyl-2´-deoxyuridine-labeled replicating DNA. Increased mtp53 R273H enhanced the association of mtp53 and PARP on replicating DNA. Blocking poly-ADP-ribose gylcohydrolase also enhanced this association. Moreover, mtp53 R273H expression enhanced overall MCM2 levels, promoted cell proliferation, and improved the synergistic cytotoxicity of treatment with the alkylating agent temozolomide in combination with the PARP inhibitor (PARPi) talazoparib. Staining of p53 and PARP1 in breast cancer TMAs and comparison with the TCGA database indicated a higher double-positive signal in basal-like breast cancer than in luminal A or luminal B subtypes. Higher PARP1 protein levels and PAR proteins were detected in mtp53 R273H than in wild-type p53-expressing PDX samples. These results indicate that mtp53 R273H and PARP1 interact with replicating DNA and should be considered as dual biomarkers for identifying breast cancers that may respond to combination PARPi treatments. SIGNIFICANCE: p53 gain-of-function mutant 273H and PARP1 interact with replication forks and could serve as potential biomarkers for breast cancer sensitivity to PARP inhibitors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/394/F1.large.jpg.


Assuntos
Replicação do DNA , DNA de Neoplasias/metabolismo , Mutação com Ganho de Função , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos Alquilantes , Proliferação de Células , DNA de Neoplasias/genética , Feminino , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Temozolomida/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
6.
PLoS Biol ; 1(2): E33, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14624239

RESUMO

The cellular pathways involved in maintaining genome stability halt cell cycle progression in the presence of DNA damage or incomplete replication. Proteins required for this pathway include Rad17, Rad9, Hus1, Rad1, and Rfc-2, Rfc-3, Rfc-4, and Rfc-5. The heteropentamer replication factor C (RFC) loads during DNA replication the homotrimer proliferating cell nuclear antigen (PCNA) polymerase clamp onto DNA. Sequence similarities suggest the biochemical functions of an RSR (Rad17-Rfc2-Rfc3-Rfc4-Rfc5) complex and an RHR heterotrimer (Rad1-Hus1-Rad9) may be similar to that of RFC and PCNA, respectively. RSR purified from human cells loads RHR onto DNA in an ATP-, replication protein A-, and DNA structure-dependent manner. Interestingly, RSR and RFC differed in their ATPase activities and displayed distinct DNA substrate specificities. RSR preferred DNA substrates possessing 5' recessed ends whereas RFC preferred 3' recessed end DNA substrates. Characterization of the biochemical loading reaction executed by the checkpoint clamp loader RSR suggests new insights into the mechanisms underlying recognition of damage-induced DNA structures and signaling to cell cycle controls. The observation that RSR loads its clamp onto a 5' recessed end supports a potential role for RHR and RSR in diverse DNA metabolism, such as stalled DNA replication forks, recombination-linked DNA repair, and telomere maintenance, among other processes.


Assuntos
Dano ao DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Recombinação Genética , Proteína de Replicação C/química , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , DNA/química , DNA/ultraestrutura , Dimerização , Escherichia coli/metabolismo , Exonucleases/química , Humanos , Imunoprecipitação , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Especificidade por Substrato , Telômero/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA