RESUMO
BACKGROUND: Male and female avian brood parasites are subject to different selection pressures: males compete for mates but do not provide parental care or territories and only females locate hosts to lay eggs. This sex difference may affect brain architecture in some avian brood parasites, but relatively little is known about their sensory systems and behaviors used to obtain sensory information. Our goal was to study the visual resolution and visual information gathering behavior (i.e., scanning) of brown-headed cowbirds. METHODOLOGY/PRINCIPAL FINDINGS: We measured the density of single cone photoreceptors, associated with chromatic vision, and double cone photoreceptors, associated with motion detection and achromatic vision. We also measured head movement rates, as indicators of visual information gathering behavior, when exposed to an object. We found that females had significantly lower density of single and double cones than males around the fovea and in the periphery of the retina. Additionally, females had significantly higher head-movement rates than males. CONCLUSIONS: Overall, we suggest that female cowbirds have lower chromatic and achromatic visual resolution than males (without sex differences in visual contrast perception). Females might compensate for the lower visual resolution by gazing alternatively with both foveae in quicker succession than males, increasing their head movement rates. However, other physiological factors may have influenced the behavioral differences observed. Our results bring up relevant questions about the sensory basis of sex differences in behavior. One possibility is that female and male cowbirds differentially allocate costly sensory resources, as a recent study found that females actually have greater auditory resolution than males.
Assuntos
Comportamento de Nidação/fisiologia , Parasitos/fisiologia , Passeriformes/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Caracteres Sexuais , Animais , Peso Corporal , Olho/anatomia & histologia , Feminino , Movimentos da Cabeça , Modelos Lineares , Masculino , Tamanho do Órgão , Parasitos/anatomia & histologia , Passeriformes/anatomia & histologiaRESUMO
In Enterobacteriaceae, the ProP protein, which takes up proline and glycine betaine, is subject to a post-translational control mechanism that increases its activity at high osmolarity. In order to investigate the osmoregulatory mechanism of the Salmonella enterica ProP, we devised a positive selection for mutations that conferred increased activity on this protein at low osmolarity. The selection involved the isolation of mutations in a proline auxotroph that resulted in increased accumulation of proline via the ProP system in the presence of glycine betaine, which is a competitive inhibitor of proline uptake by this permease. This selection was performed by first-year undergraduates in two semesters of a research-based laboratory course. The students generated sixteen mutations resulting in six different single amino acids substitutions. They determined the effects of the mutations on the growth rates of the cells in media of high and low osmolarity in the presence of low concentrations of proline or glycine betaine. Furthermore, they identified the mutations by DNA sequencing and displayed the mutated amino acids on a putative three-dimensional structure of the protein. This analysis suggested that all six amino acid substitutions are residues in trans-membrane helices that have been proposed to contribute to the formation of the transport pore, and, thus, may affect the substrate binding site of the protein.