Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Microencapsul ; 40(1): 37-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36630267

RESUMO

We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae Solieria filiformis was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, in vitro, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.


Assuntos
Corantes Fluorescentes , Nanopartículas , Masculino , Humanos , Polímeros , Tamanho da Partícula , Estabilidade Proteica , Poliésteres
2.
AAPS PharmSciTech ; 23(6): 212, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918472

RESUMO

Squamous cell carcinoma (SCC) represents 20% of cases of non-melanoma skin cancer, and the most common treatment is the removal of the tumor, which can leave large scars. 5-Fluorouracil (5FU) is a drug used in the treatment of SCC, but it is highly hydrophilic, resulting in poor skin penetration in topical treatment. Some strategies can be used to increase the cutaneous penetration of the drug, such as the combination of liposomes containing penetration enhancers, for instance, surfactants, associated with the use of microneedling. Thus, the present work addresses the development of liposomes with penetration enhancers, such as sorbtitan monolaurate, span 20, for topical application of 5-FU and associated or not with the use of microneedling for skin delivery. Liposomes were developed using the lipid film hydration, resulting in particle size, polydispersity index, zeta potential, and 5-FU encapsulation efficiency of 88.08 nm, 0.169, -12.3 mV, and 50.20%, respectively. The presence of span 20 in liposomes potentiated the in vitro release of 5-FU. MTT assay was employed for cytotoxicity evaluation and the IC50 values were 0.62, 30.52, and 24.65 µM for liposomes with and without span 20 and 5-FU solution, respectively after 72-h treatment. Flow cytometry and confocal microscopy analysis evidenced high cell uptake for the formulations. In skin penetration studies, a higher concentration of 5-FU was observed in the epidermis + dermis, corresponding to 1997.71, 1842.20, and 2585.49 ng/cm2 in the passive penetration and 3214.07, 2342.84, and 5018.05 ng/cm2 after pretreatment with microneedles, for solution, liposome without and with span 20, respectively. Therefore, herein, we developed a nanoformulation for 5-FU delivery, with suitable physicochemical characteristics, potent skin cancer cytotoxicity, and cellular uptake. Span 20-based liposomes increased the skin penetration of 5-FU in association of microneedling. Altogether, the results shown herein evidenced the potential of the liposome containing span 20 for topical delivery of 5-FU.


Assuntos
Fluoruracila , Neoplasias Cutâneas , Hexoses , Humanos , Lipossomos/metabolismo , Tamanho da Partícula , Pele/metabolismo , Absorção Cutânea , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
3.
J Sep Sci ; 44(21): 3986-3995, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34490976

RESUMO

Docetaxel is an anticancer that belongs to the family of taxanes and acts in the inhibition of cell proliferation through the polymerization of microtubules. The aim of this study was the development and validation of a fast method by reversed-phase high-performance liquid chromatography for quantitative analysis of docetaxel encapsulated in pegylated liposomes. The analytical method was validated for the following recognized specifications: system suitability, precision (repeatability and intermediate precision), linearity, accuracy, selectivity, detection and quantification limits, and robustness. The reversed phase-high-performance liquid chromatography analyses were performed at a temperature of 45°C (isocratic mode). The mobile phase was composed of acetonitrile and water (65:35, v/v) and the flow rate was fixed at 0.8 mL/min. The running time and wavelength were 8 min and 230 nm, respectively. The method was found to be linear, precise, selective, precise, robust, accurate, in the range of 1-75 µg/mL (R2 = 0.9999) and the values of detection and quantification limits were 2.35 and 7.84 µg/mL, respectively. The release rates of docetaxel in pegylated liposomes were lower compared to docetaxel in solution. The reversed phase high-performance liquid chromatography method developed proved to be adequate and can be effectively used to determine the in vitro release profile of docetaxel transported by pegylated liposomes.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Docetaxel , Lipossomos/química , Polietilenoglicóis/química , Docetaxel/química , Docetaxel/farmacocinética , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
4.
Bioorg Med Chem Lett ; 30(20): 127469, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768650

RESUMO

The pentacyclic triterpene 3ß,6ß,16ß-tri-hydroxilup-20(29)-ene is a natural product produced by the Brazilian medicinal plant Combretum leprosum. Its cytotoxicity has been previously reported against breast cancer cell lines. The low water solubility of this natural product, that hampers its bioavailability, motivated the investigation of a new nanoparticle formulation containing the triterpene in order to improve its bioactivity. The triterpene was encapsulated in polycaprolactone (PCL) polymer by nanoprecipitation, producing homogenic nanoparticles with nanometer sizes (122.7 ± 2.06 nm), which were characterized by FT-IR, SEM imaging and DSC. The cytotoxicity (MTT method) of the nanoparticle containing the triterpene 1, besides the free natural product and the nanoparticle control (without 1), was assayed against three human tumor cell lines [human colon carcinoma line (HCT116), prostate (PC3) and glioblastoma (SNB19)] and the normal epithelial embryo kidney human cell line (Hek293T). The nanocarrier produced a significative effect in the cytotoxicity of the natural product in the nanoformulation (IC50 0.11-0.26 µg mL-1) when compared with its free form (IC50 1.07-1.44 µg mL-1). Additionally, higher selectivity of the triterpene to the tumor cells was found when it was encapsulated (SI 1.92-4.54) than in its free form (SI 0.42-0.56). In this case, the nanoencapsulated triterpene was more selective to PC3 (SI 3.33) and SNB19 (SI 4.54) tumor cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Combretum/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cápsulas , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Folhas de Planta/química , Relação Estrutura-Atividade
5.
AAPS PharmSciTech ; 21(4): 125, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350635

RESUMO

Sunlight is important to health, but higher exposure to radiation causes early aging of the skin and skin damage that can lead to skin cancers. This study aimed at producing a stable octyl p-methoxycinnamate (OMC)-loaded nanostructured lipid carrier (NLC) sunscreen, which can help in the photoprotective effect. NLC was produced by emulsification-sonication method and these systems were composed of myristyl myristate (MM), caprylic capric triglyceride (CCT), Tween® 80 (TW), and soybean phosphatidylcholine (SP) and characterized by dynamic light scattering (DLS), zeta potential (ZP) measurement, atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and in vitro release studies. Pre-formulation studies were performed changing TW concentrations and no differences were found at concentrations of 1.0 and 2.0%. Two selected formulations were designed and showed an average size of 91.5-131.7, polydispersity index > 0.2, and a negative value of ZP. AFM presented a sphere-like morphology and SEM showed ability to form a thin film. DSC exhibited that the incorporation of OMC promoted reduction of enthalpy due to formation of a more amorphous structure. Drug release shows up to 55.74% and 30.57%, and this difference could be related to the presence of SP in this formulation that promoted a more amorphous structure; the release mechanism study indicated Fickian diffusion and relaxation. Sun protection factor (SPF) evaluation was performed using NLC and presented values around 40, considerably higher than those observed in the literature. The developed formulations provide a beneficial alternative to conventional sunscreen formulations.


Assuntos
Cinamatos/síntese química , Portadores de Fármacos/síntese química , Lipídeos/síntese química , Nanoestruturas/química , Fator de Proteção Solar/métodos , Protetores Solares/síntese química , Varredura Diferencial de Calorimetria/métodos , Cinamatos/farmacocinética , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Lipídeos/farmacocinética , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Protetores Solares/farmacocinética
6.
AAPS PharmSciTech ; 19(3): 1401-1409, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29404955

RESUMO

Trans-resveratrol (RSV) is a natural compound with several properties, such as the ability to inhibit the tyrosinase enzyme, with potential application as a skin-lightning agent and for the treatment of skin disorders associated with hyperpigmentation and melanogenesis. However, the drug faces several drawbacks which altogether limit its therapeutic application. Thus, drug loading into nanocarriers emerge as an alternative to circumvent these problems. Herein, nanostructured lipid carriers (NLCs) have been employed for RSV encapsulation, with comparison of two different lipids, glyceryl behenate (more hydrophobic), and polyoxyethylene 40 (PEG 40) stearate. PEG 40 stearate-containing NLCs presented smaller particle size and polydispersity compared with glyceryl behenate, attributed to better emulsification and nanoparticle formation, resulting in higher RSV encapsulation efficiency. Drug was loaded in both carriers as a molecular dispersion. Furthermore, the formulations had very low RSV release, which occurred due to the crystallinity degree of lipid matrix, in accordance with the DSC data. Moreover, RSV cytotoxicity against L-929 cells was not increased when loaded into nanocarriers. Interestingly, RSV-loaded formulation prepared with PEG-40 stearate resulted on greater tyrosinase inhibition than RSV solution and formulation containing glyceryl behenate, equivalent to 1.31 and 1.83 times higher, respectively, demonstrating that the incorporation of RSV into NLC allowed an enhanced tyrosinase inhibitory activity. Overall, the results obtained herein evidence potential for future in vivo evaluation of RSV-loaded NLCs.


Assuntos
Portadores de Fármacos/química , Inibidores Enzimáticos/administração & dosagem , Ácidos Graxos/química , Monofenol Mono-Oxigenase/antagonistas & inibidores , Polietilenoglicóis/química , Estilbenos/administração & dosagem , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Nanoestruturas/química , Tamanho da Partícula , Resveratrol , Estilbenos/farmacologia , Estilbenos/toxicidade
7.
AAPS PharmSciTech ; 18(7): 2783-2791, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28374340

RESUMO

We have designed a microemulsion (ME) containing Ketoprofen (KET) for anti-inflammatory effect evaluated using the rat paw edema model. The ME was prepared by adding propylene glycol (PG) loaded with 1% KET/water (3:1, w/w), to a mixture of sorbitan monooleate and polysorbate 80 (47.0%) at 3:1 (w/w) and canola oil (38.0%). The physicochemical characterization of KET-loaded ME involved particle size and zeta potential determination, entrapment efficiency, calorimetric analysis, and in vitro drug release. The in vivo anti-inflammatory study employed male Wistar rats. Measurement of the foot volume was performed using a caliper immediately before and 2, 4, and 6 h after injection of Aerosil. KET-loaded ME showed particle size around 20 nm, with zeta potential at -16 mV and entrapment efficiency at 70%. Moreover, KET was converted to the amorphous state when loaded in the formulation and it was shown that the drug was slowly released from the ME. Finally, the in vivo biological activity was similar to that of the commercial gel, but ME better controlled edema at 4 h. These results demonstrated that the ME formulation is an alternative strategy for improving KET skin permeation for anti-inflammatory effect. Furthermore, our findings are promising considering that the developed ME was loaded with only 1% KET, and the formulation was able to keep a similar release profile and in vivo effect compared to the commercial gel with 2.5% KET. Therefore, the KET-loaded developed herein ME is likely to have a decreased side effect compared with that of the commercial gel, but both presented the same efficacy.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Cetoprofeno/administração & dosagem , Pele/metabolismo , Animais , Liberação Controlada de Fármacos , Edema/tratamento farmacológico , Emulsões/química , Cetoprofeno/química , Cetoprofeno/farmacocinética , Cetoprofeno/farmacologia , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar , Absorção Cutânea
8.
J Pharm Sci ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705465

RESUMO

Chloraluminium phthalocyanine (ClAlPc) has potential therapeutic effect for the treatment of cancer; however, the molecule is lipophilic and may present self-aggregation which limits its clinical success. Thus, nanocarriers like liposomes can improve ClAlPc solubility, reduce off-site toxicity and increase circulation time. For this purpose, developing suitable liposomes requires the evaluation of different lipid compositions. Herein, we aimed to develop liposomes containing soy phosphatidylcholine (SPC), 1,2-distearoyl-sn-glycero- 3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPEPEG2000), cholesterol and oleic acid loaded with ClAlPc using the surface response methodology and the Box-Behnken design. Liposomes with particle size from 110.93 to 374.97 nm and PdI from 0.265 to 0.468 were obtained. The optimized formulation resulted in 69.09 % of ClAlPc encapsulated, with particle size and polydispersity index, respectively, at 153.20 nm and 0.309, providing stability and aggregation control. Atomic force microscopy revealed vesicles in a spherical or almost spherical shape, while the analyzes by Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR) suggested that the drug was adequately incorporated into the lipid bilayer of liposomes, in its amorphous state or molecularly dispersed. In vitro studies conducted in breast cancer cells (4T1) showed that liposome improved phototoxicity compared to the ClAlPc solution. ClAlPc-loaded liposomes also enhanced the production of ROS 3-fold compared to the ClAlPc solution. Finally, confocal microscopy and flow cytometry demonstrated the ability of the liposomes to enter cells and deliver the fluorescent ClAlPc photosensitizer with dose and time-dependent effects. Thus, this work showed that Box-Behnken factorial design was an effective strategy for optimizing formulation development. The obtained ClAlPc liposomes can be applied for photodynamic therapy in breast cancer cells.

9.
Int J Pharm ; : 124439, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972520

RESUMO

Liposomes functionalized with monoclonal antibodies offer targeted therapy for cancer, boasting advantages like sustained drug release, enhanced stability, passive accumulation in tumors, and interaction with overexpressed receptors on cancer cells. This study aimed to develop and characterize anti-EGFR immunoliposomes loaded with cabazitaxel and assess their properties against prostate cancer in vitro and in vivo. Using a Box-Behnken design, a formulation with soy phosphatidylcholine, 10% cholesterol, and a 1:20 drug-lipid ratio yielded nanometric particle size, low polydispersity and high drug encapsulation. Immunoliposomes were conjugated with cetuximab through DSPE-PEG-Maleimide lipid anchor. Characterization confirmed intact antibody structure and interaction with EGFR receptor following conjugation. Cabazitaxel was dispersed within the liposomes in the amorphous state, confirmed by solid-state analyses. In vitro release studies showed slower cabazitaxel release from immunoliposomes. Immunoliposomes had enhanced cabazitaxel cytotoxicity in EGFR-overexpressing DU145 cells without affecting non-tumor L929 cells. Cetuximab played an important role to improve cellular uptake in a time-dependent fashion in EGFR-overexpressing prostate cancer cells. In vivo, immunoliposomes led to significant tumor regression, improved survival, and reduced weight loss in xenograft mice. While cabazitaxel induced leukopenia, consistent with clinical findings, histological analysis revealed no evident toxicity. In conclusion, the immunoliposomes displayed suitable physicochemical properties for cabazitaxel delivery, exhibited cytotoxicity against EGFR-expressing prostate cancer cells, with high cell uptake, and induced significant tumor regression in vivo, with manageable systemic toxicity.

10.
Pharmaceutics ; 15(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37242613

RESUMO

Photodynamic therapy (PDT) using methylene blue (MB) as a photosensitizer has emerged as an alternative treatment for skin cancers, such as squamous cell carcinoma (SCC). To increase the cutaneous penetration of the drug, some strategies are used, such as the association of nanocarriers and physical methods. Thus, herein we address the development of nanoparticles based on poly-Ɛ-caprolactone (PCL), optimized with the Box-Behnken factorial design, for topical application of MB associated with sonophoresis. The MB-nanoparticles were developed using the double emulsification-solvent evaporation technique and the optimized formulation resulted in an average size of 156.93 ± 8.27 nm, a polydispersion index of 0.11 ± 0.05, encapsulation efficiency of 94.22 ± 2.19% and zeta potential of -10.08 ± 1.12 mV. Morphological evaluation by scanning electron microscopy showed spherical nanoparticles. In vitro release studies show an initial burst compatible with the first-order mathematical model. The nanoparticle showed satisfactory generation of reactive oxygen species. The MTT assay was used to assess cytotoxicity and IC50; values of 79.84; 40.46; 22.37; 9.90 µM were obtained, respectively, for the MB-solution and the MB-nanoparticle without and with light irradiation after 2 h of incubation. Analysis using confocal microscopy showed high cellular uptake for the MB-nanoparticle. With regard to skin penetration, a higher concentration of MB was observed in the epidermis + dermis, corresponding to 9.81, 5.27 µg/cm2 in passive penetration and 24.31 and 23.81 µg/cm2 after sonophoresis, for solution-MB and nanoparticle-MB, respectively. To the best of our knowledge, this is the first report of MB encapsulation in PCL nanoparticles for application in skin cancer using PDT.

11.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345140

RESUMO

Resveratrol (RSV), a phytoalexin from grapes and peanuts, has been reported to exhibit antiproliferative effects on various cancer cell lines. In breast cancer, RSV has been demonstrated to exert an antiproliferative effect on both hormone-dependent and hormone-independent breast cancer cell lines. However, RSV is a lipophilic drug, and its therapeutic effect could be improved through nanoencapsulation. Functionalizing polymeric nanoparticles based on polycaprolactone (PCL) with polyethylene glycol 1000 tocopheryl succinate (TPGS) has been reported to prolong drug circulation and reduce drug resistance. However, the effect of TPGS on the physicochemical properties and biological effects of breast cancer cells remains unclear. Therefore, this study aimed to develop RSV-loaded PCL nanoparticles using nanoprecipitation and investigate the effect of TPGS on the nanoparticles' physicochemical characteristics (particle size, zeta potential, encapsulation efficiency, morphology, and release rate) and biological effects on the 4T1 breast cancer cell line (cytotoxicity and cell uptake), in vitro and in vivo. The optimized nanoparticles without TPGS had a size of 138.1 ± 1.8 nm, a polydispersity index (PDI) of 0.182 ± 0.01, a zeta potential of -2.42 ± 0.56 mV, and an encapsulation efficiency of 98.2 ± 0.87%, while nanoparticles with TPGS had a size of 127.5 ± 3.11 nm, PDI of 0.186 ± 0.01, zeta potential of -2.91 ± 0.90 mV, and an encapsulation efficiency of 98.40 ± 0.004%. Scanning electron microscopy revealed spherical nanoparticles with low aggregation tendency. Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) identified the constituents of the nanoparticles and the presence of drug encapsulation in an amorphous state. In vitro release studies showed that both formulations followed the same dissolution profiles, with no statistical differences. In cytotoxicity tests, IC50 values of 0.12 µM, 0.73 µM, and 4.06 µM were found for the formulation without TPGS, with TPGS, and pure drug, respectively, indicating the potentiation of the cytotoxic effect of resveratrol when encapsulated. Flow cytometry and confocal microscopy tests indicated excellent cellular uptake dependent on the concentration of nanoparticles, with a significant difference between the two formulations, suggesting that TPGS may pose a problem in the endocytosis of nanoparticles. The in vivo study evaluating the antitumor activity of the nanoparticles confirmed the data obtained in the in vitro tests, demonstrating that the nanoparticle without TPGS significantly reduced tumor volume, tumor mass, maintained body weight, and improved survival in mice. Moreover, the biochemical evaluation evidenced possible hepatotoxicity for formulation with TPGS.

12.
Pharmaceutics ; 15(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36986777

RESUMO

Docetaxel (DTX) is a non-selective antineoplastic agent with low solubility and a series of side effects. The technology of pH-sensitive and anti-epidermal growth factor receptor (anti-EGFR) immunoliposomes aims to increase the selective delivery of the drug in the acidic tumor environment to cells with EFGR overexpression. Thus, the study aimed to develop pH-sensitive liposomes based on DOPE (dioleoylphosphatidylethanolamine) and CHEMS (cholesteryl hemisuccinate), using a Box-Behnken factorial design. Furthermore, we aimed to conjugate the monoclonal antibody cetuximab onto liposomal surface, as well as to thoroughly characterize the nanosystems and evaluate them on prostate cancer cells. The liposomes prepared by hydration of the lipid film and optimized by the Box-Behnken factorial design showed a particle size of 107.2 ± 2.9 nm, a PDI of 0.213 ± 0.005, zeta potential of -21.9 ± 1.8 mV and an encapsulation efficiency of 88.65 ± 20.3%. Together, FTIR, DSC and DRX characterization demonstrated that the drug was properly encapsulated, with reduced drug crystallinity. Drug release was higher in acidic pH. The liposome conjugation with the anti-EGFR antibody cetuximab preserved the physicochemical characteristics and was successful. The liposome containing DTX reached an IC50 at a concentration of 65.74 nM in the PC3 cell line and 28.28 nM in the DU145 cell line. Immunoliposome, in turn, for PC3 cells reached an IC50 of 152.1 nM, and for the DU145 cell line, 12.60 nM, a considerable enhancement of cytotoxicity for the EGFR-positive cell line. Finally, the immunoliposome internalization was faster and greater than that of liposome in the DU145 cell line, with a higher EGFR overexpression. Thus, based on these results, it was possible to obtain a formulation with adequate characteristics of nanometric size, a high encapsulation of DTX and liposomes and particularly immunoliposomes containing DTX, which caused, as expected, a reduction in the viability of prostate cells, with high cellular internalization in EGFR overexpressing cells.

13.
Crit Rev Anal Chem ; 51(5): 399-410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32212927

RESUMO

Transferrin is a protein involved in iron uptake by cells and has been identified as a potential target for directing drug-loaded nanoparticles for cancer treatment and diagnosis. Most methods for conjugation of transferrin and nanoparticles involve the formation of a thioeter bond between thiolated transferrin and maleimide-containing nanoparticle. For nanoparticle development, it is important to perform a thorough physicochemical characterization, including quantification of the amount of transferrin functionalizing the delivery system. Thus, following the transferrin and nanoparticle chemical conjugation, an analytical method is need for transferrin quantification. Altogether, we revised both physicochemical and pharmacokinetics transferrin characteristics, the aspects of iron transport after interaction with transferrin, the development of transferrin targeted-nanoparticles, highlighting both their composition, synthesis methods and in vitro/in vivo evaluation. Furthermore, we addressed the analytical methods employed in protein quantification, including spectrophotometric/colorimetric, immunoassays, electrophoretic and chromatographic techniques used to identify and/or quantify of transferrin in biological matrices and drug delivery systems.


Assuntos
Glicoproteínas/química , Transferrina/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química
14.
Curr Med Chem ; 28(13): 2485-2520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32484100

RESUMO

Targeted therapy has been recently highlighted due to the reduction of side effects and improvement in overall efficacy and survival from different types of cancers. Considering the approval of many monoclonal antibodies in the last twenty years, cancer treatment can be accomplished by the combination of monoclonal antibodies and small molecule chemotherapeutics. Thus, strategies to combine both drugs in a single administration system are relevant in the clinic. In this context, two strategies are possible and will be further discussed in this review: antibody-drug conjugates (ADCs) and antibody-functionalized nanoparticles. First, it is important to better understand the possible molecular targets for cancer therapy, addressing different antigens that can selectively bind to antibodies. After selecting the best target, ADCs can be prepared by attaching a cytotoxic drug to an antibody able to target a cancer cell antigen. Briefly, an ADC will be formed by a monoclonal antibody (MAb), a cytotoxic molecule (cytotoxin) and a chemical linker. Usually, surface-exposed lysine or the thiol group of cysteine residues are used as anchor sites for linker-drug molecules. Another strategy that should be considered is antibody-functionalized nanoparticles. Basically, liposomes, polymeric and inorganic nanoparticles can be attached to specific antibodies for targeted therapy. Different conjugation strategies can be used, but nanoparticles coupling between maleimide and thiolated antibodies or activation with the addition of ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/ N-hydroxysuccinimide (NHS) (1:5) and further addition of the antibody are some of the most used strategies. Herein, molecular targets and conjugation strategies will be presented and discussed to better understand the in vitro and in vivo applications presented. Also, the clinical development of ADCs and antibody-conjugated nanoparticles are addressed in the clinical development section. Finally, due to the innovation related to the targeted therapy, it is convenient to analyze the impact on patenting and technology. Information related to the temporal evolution of the number of patents, distribution of patent holders and also the number of patents related to cancer types are presented and discussed. Thus, our aim is to provide an overview of the recent developments in immunoconjugates for cancer targeting and highlight the most important aspects for clinical relevance and innovation.


Assuntos
Antineoplásicos , Imunoconjugados , Nanopartículas , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico
15.
Int J Pharm ; 592: 120082, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188892

RESUMO

The epidermal growth factor receptor (EGFR) belongs to the tyrosine kinase receptors family and is present in the epithelial cell membrane. Its endogenous activation occurs through the binding of different endogenous ligands, including the epidermal growth factor (EGF), leading to signaling cascades able to maintain normal cellular functions. Although involved in the development and maintenance of tissues in normal conditions, when EGFR is overexpressed, it stimulates the growth and progression of tumors, resulting in angiogenesis, invasion and metastasis, through some main cascades such as Ras/Raf/MAPK, PIK-3/AKT, PLC-PKC and STAT. Besides, considering the limitations of conventional chemotherapy that result in high toxicity and low tumor specificity, EGFR is currently considered an important target. As a result, several monoclonal antibodies are currently approved for use in cancer treatment, such as cetuximab (CTX), panitumumab, nimotuzumab, necitumumab and others are in clinical trials. Aiming to combine the chemotherapeutic agent toxicity and specific targeting to EGFR overexpressing tumor tissues, two main strategies will be discussed in this review: antibody-drug conjugates (ADCs) and antibody-nanoparticle conjugates (ANCs). Briefly, ADCs consist of antibodies covalently linked through a spacer to the cytotoxic drug. Upon administration, binding to EGFR and endocytosis, ADCs suffer chemical and enzymatic reactions leading to the release and accumulation of the drug. Instead, ANCs consist of nanotechnology-based formulations, such as lipid, polymeric and inorganic nanoparticles able to protect the drug against inactivation, allowing controlled release and also passive accumulation in tumor tissues by the enhanced permeability and retention effect (EPR). Furthermore, ANCs undergo active targeting through EGFR receptor-mediated endocytosis, leading to the formation of lysosomes and drug release into the cytosol. Herein, we will present and discuss some important aspects regarding EGFR structure, its role on internal signaling pathways and downregulation aspects. Then, considering that EGFR is a potential therapeutic target for cancer therapy, the monoclonal antibodies able to target this receptor will be presented and discussed. Finally, ADCs and ANCs state of the art will be reviewed and recent studies and clinical progresses will be highlighted. To the best of our knowledge, this is the first review paper to address specifically the EGFR target and its application on ADCs and ANCs.


Assuntos
Antineoplásicos , Imunoconjugados , Nanopartículas , Neoplasias , Preparações Farmacêuticas , Receptores ErbB , Neoplasias/tratamento farmacológico
16.
Crit Rev Anal Chem ; 50(2): 125-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30869993

RESUMO

Cetuximab (CTX) is a chimeric monoclonal antibody (mAb) able to selectively bind to the epidermal growth factor receptor (EGFR), resulting in inhibition of EGF linkage and phosphorylation cascade interruption. As a result, it is able to prevent cell proliferation, angiogenesis and metastasis, usually related to cancer malignization. As the EGFR is overexpressed in many human tumors, its use has been approved by FDA since 2006. Clinical use of CTX has been proved to cause skin rash which is related to the better prognosis. Thus, currently strategies also focus on the development of safe and effective drug delivery systems and on quantification methods for CTX in a variety of matrices. Based on the challenges to quantify CTX, immunoassays, spectrophotometric assays, electrophoretic assays and chromatographic assays are under study. Among them, the spectrophotometric/colorimetric techniques, used in near 32% of the papers investigated, followed by chromatographic techniques and immunoassay methods, such as enzyme-linked immunosorbent assay (ELISA), used in 29% and 26%, respectively, and electrophoretic techniques used in near 13%. Herein, we will describe and discuss CTX main aspects and highlight the main quantification methods that are currently used for its quantification in different matrices.


Assuntos
Cetuximab/análise , Animais , Cetuximab/farmacologia , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Curr Med Chem ; 27(15): 2494-2513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30306849

RESUMO

Stimuli-responsive drug-delivery nanocarriers (DDNs) have been increasingly reported in the literature as an alternative for breast cancer therapy. Stimuli-responsive DDNs are developed with materials that present a drastic change in response to intrinsic/chemical stimuli (pH, redox and enzyme) and extrinsic/physical stimuli (ultrasound, Near-infrared (NIR) light, magnetic field and electric current). In addition, they can be developed using different strategies, such as functionalization with signaling molecules, leading to several advantages, such as (a) improved pharmaceutical properties of liposoluble drugs, (b) selectivity with the tumor tissue decreasing systemic toxic effects, (c) controlled release upon different stimuli, which are all fundamental to improving the therapeutic effectiveness of breast cancer treatment. Therefore, this review summarizes the use of stimuli-responsive DDNs in the treatment of breast cancer. We have divided the discussions into intrinsic and extrinsic stimuli and have separately detailed them regarding their definitions and applications. Finally, we aim to address the ability of these stimuli-responsive DDNs to control the drug release in vitro and the influence on breast cancer therapy, evaluated in vivo in breast cancer models.


Assuntos
Neoplasias da Mama , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Oxirredução
18.
Antibiotics (Basel) ; 9(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322526

RESUMO

Dermatophyte fungal infections are difficult to treat because they need long-term treatments. 4-Nerolidylcatechol (4-NC) is a compound found in Piper umbellatum that has been reported to demonstrate significant antifungal activity, but is easily oxidizable. Due to this characteristic, the incorporation in nanostructured systems represents a strategy to guarantee the compound's stability compared to the isolated form and the possibility of improving antifungal activity. The objective of this study was to incorporate 4-NC into polymeric nanoparticles to evaluate, in vitro and in vivo, the growth inhibition of Microsporum canis. 4-NC was isolated from fresh leaves of P. umbellatum, and polymer nanoparticles of polycaprolactone were developed by nanoprecipitation using a 1:5 weight ratio (drug:polymer). Nanoparticles exhibited excellent encapsulation efficiency, and the antifungal activity was observed in nanoparticles with 4-NC incorporated. Polymeric nanoparticles can be a strategy employed for decreased cytotoxicity, increasing the stability and solubility of substances, as well as improving the efficacy of 4-NC.

19.
Colloids Surf B Biointerfaces ; 194: 111185, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32574928

RESUMO

Prostate cancer is the second cause of cancer death in men worldwide. Docetaxel (DTX), an antimitotic drug, is widely used for the treatment of metastatic prostate cancer patients. Taxotere® is a commercial DTX formulation. It contains a polysorbate 80 surfactant to improve DTX aqueous solubility, which has been associated with hypersensitivity reactions in patients. Liposomes have been used as promising delivery systems for a range of hydrophobic drugs, such as DTX, offering improved drug water solubility and biocompatibility, without compromising its anticancer activity. Herein, DTX-loaded liposomes were developed using the Box-Behnken factorial design. The optimized formulation was nano-sized, homogenous in size (67.47 nm) with high DTX encapsulation efficiency (99.95 %). The encapsulated DTX was in a soluble amorphous state, which was slowly released. Next, to increase the liposomes selectivity to prostate cancer cells, cetuximab, an anti-EGFR monoclonal antibody. was successfully conjugated to the surface of liposomes, without compromising cetuximab protein structure and stability. As expected, our results showed higher cellular uptake and toxicity of immunoliposomes, compared to non-targeted liposomes, in DU145 (EGFR-overxpressing) prostate cancer cells. To the best of our knowledge, this is the first report of engineering EGFR-targeted liposomes to enhance the selectivity of DTX delivery to EGFR-positive prostate cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Docetaxel , Sistemas de Liberação de Medicamentos , Receptores ErbB , Humanos , Lipossomos , Masculino , Neoplasias da Próstata/tratamento farmacológico
20.
Methods Mol Biol ; 1674: 229-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28921442

RESUMO

Drug delivery is of paramount importance, since the drug needs to be delivered to a specific site, in adequate concentration, avoiding degradation in order to provide therapeutic efficacy. Different nanocarriers have been used over the years for this purpose and liposomes are well-established systems due to the high biocompatibility and the possibility to vehiculate both hydrophilic and lipophilic drugs. In order to circumvent the rapid clearance by the reticuloendothelial system and to avoid the healthy cells exposure to the drug, long circulating liposomes containing polyethyleneglycol (PEG) and functionalized liposomes for targeted delivery have been developed. Immunoliposomes consist of liposomes containing antibodies or antibody fragments attached at the membrane surface. This attachment can be performed using PEG lipids, containing a reactive terminal group such as maleimide and thiolated antibodies. Additionaly, the use of PEG chains as spacers increases antibody-antigen affinity, since the antibody is not shielded by the steric hindrance of PEG and also due to the correct orientation of antibodies for interaction with receptors on cell surface. In this chapter, we describe and discuss in details the protocol to prepare anti-epidermal growth factor receptor (anti-EGFR) and anti-human epidermal growth factor receptor 2 (anti-HER2) liposomes using cetuximab and trastuzumab as antibodies. We present the direct coupling method based on the maleimide thioether reaction for these immunoliposomes preparation and present some characterization steps and in vitro studies in cell culture which can be used for better understanding these nanocarriers.


Assuntos
Anticorpos Monoclonais/química , Lipossomos/química , Sulfetos/química , Cetuximab/química , Sistemas de Liberação de Medicamentos/métodos , Receptores ErbB/química , Humanos , Maleimidas/química , Polietilenoglicóis/química , Receptor ErbB-2/química , Trastuzumab/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA