Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 102(2): 893-992, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698550

RESUMO

The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Humanos
2.
EMBO J ; 41(19): e110046, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36039850

RESUMO

The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.


Assuntos
Sinalização do Cálcio , Melanoma , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Colesterol , Glucose , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
3.
Nature ; 586(7828): 287-291, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32728214

RESUMO

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.


Assuntos
Transporte de Elétrons , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Sistemas do Segundo Mensageiro , Sódio/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fosfatos de Cálcio/metabolismo , Linhagem Celular Tumoral , Precipitação Química , Humanos , Masculino , Fluidez de Membrana , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Trocador de Sódio e Cálcio/metabolismo
4.
Circ Res ; 132(2): 154-166, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36575984

RESUMO

BACKGROUND: Hydrogen sulfide is a critical endogenous signaling molecule that exerts protective effects in the setting of heart failure. Cystathionine γ-lyase (CSE), 1 of 3 hydrogen-sulfide-producing enzyme, is predominantly localized in the vascular endothelium. The interaction between the endothelial CSE-hydrogen sulfide axis and endothelial-mesenchymal transition, an important pathological process contributing to the formation of fibrosis, has yet to be investigated. METHODS: Endothelial-cell-specific CSE knockout and Endothelial cell-CSE overexpressing mice were subjected to transverse aortic constriction to induce heart failure with reduced ejection fraction. Cardiac function, vascular reactivity, and treadmill exercise capacity were measured to determine the severity of heart failure. Histological and gene expression analyses were performed to investigate changes in cardiac fibrosis and the activation of endothelial-mesenchymal transition. RESULTS: Endothelial-cell-specific CSE knockout mice exhibited increased endothelial-mesenchymal transition and reduced nitric oxide bioavailability in the myocardium, which was associated with increased cardiac fibrosis, impaired cardiac and vascular function, and worsened exercise performance. In contrast, genetic overexpression of CSE in endothelial cells led to increased myocardial nitric oxide, decreased endothelial-mesenchymal transition and cardiac fibrosis, preserved cardiac and endothelial function, and improved exercise capacity. CONCLUSIONS: Our data demonstrate that endothelial CSE modulates endothelial-mesenchymal transition and ameliorate the severity of pressure-overload-induced heart failure, in part, through nitric oxide-related mechanisms. These data further suggest that endothelium-derived hydrogen sulfide is a potential therapeutic for the treatment of heart failure with reduced ejection fraction.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Disfunção Ventricular Esquerda , Camundongos , Animais , Sulfeto de Hidrogênio/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Camundongos Knockout , Endotélio Vascular/metabolismo , Fibrose
5.
Circ Res ; 131(3): 222-235, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35701874

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS: Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS: Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS: Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Disfunção Ventricular Esquerda , Trifosfato de Adenosina/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/metabolismo
6.
J Mol Cell Cardiol ; 184: 1-12, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709008

RESUMO

At least seven cell death programs are activated during myocardial infarction (MI), but which are most important in causing heart damage is not understood. Two of these programs are mitochondrial-dependent necrosis and apoptosis. The canonical function of the pro-cell death BCL-2 family proteins BAX and BAK is to mediate permeabilization of the outer mitochondrial membrane during apoptosis allowing apoptogen release. BAX has also been shown to sensitize cells to mitochondrial-dependent necrosis, although the underlying mechanisms remain ill-defined. Genetic deletion of Bax or both Bax and Bak in mice reduces infarct size following reperfused myocardial infarction (MI/R), but the contribution of BAK itself to cardiomyocyte apoptosis and necrosis and infarction has not been investigated. In this study, we use Bak-deficient mice and isolated adult cardiomyocytes to delineate the role of BAK in the pathogenesis of infarct generation and post-infarct remodeling during MI/R and non-reperfused MI. Generalized homozygous deletion of Bak reduced infarct size ∼50% in MI/R in vivo, which was attributable primarily to decreases in necrosis. Protection from necrosis was also observed in BAK-deficient isolated cardiomyocytes suggesting that the cardioprotection from BAK loss in vivo is at least partially cardiomyocyte-autonomous. Interestingly, heterozygous Bak deletion, in which the heart still retains ∼28% of wild type BAK levels, reduced infarct size to a similar extent as complete BAK absence. In contrast to MI/R, homozygous Bak deletion did not attenuate acute infarct size or long-term scar size, post-infarct remodeling, cardiac dysfunction, or mortality in non-reperfused MI. We conclude that BAK contributes significantly to cardiomyocyte necrosis and infarct generation during MI/R, while its absence does not appear to impact the pathogenesis of non-reperfused MI. These observations suggest BAK may be a therapeutic target for MI/R and that even partial pharmacological antagonism may provide benefit.


Assuntos
Infarto do Miocárdio , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Camundongos , Apoptose/fisiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Homozigoto , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Necrose/genética , Deleção de Sequência , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
7.
J Neurochem ; 165(4): 521-535, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563047

RESUMO

Intracellular Ca2+ concentrations are strictly controlled by plasma membrane transporters, the endoplasmic reticulum, and mitochondria, in which Ca2+ uptake is mediated by the mitochondrial calcium uniporter complex (MCUc), while efflux occurs mainly through the mitochondrial Na+ /Ca2+ exchanger (NCLX). RNAseq database repository searches led us to identify the Nclx transcript as highly enriched in astrocytes when compared with neurons. To assess the role of NCLX in mouse primary culture astrocytes, we inhibited its function both pharmacologically or genetically. This resulted in re-shaping of cytosolic Ca2+ signaling and a metabolic shift that increased glycolytic flux and lactate secretion in a Ca2+ -dependent manner. Interestingly, in vivo genetic deletion of NCLX in hippocampal astrocytes improved cognitive performance in behavioral tasks, whereas hippocampal neuron-specific deletion of NCLX impaired cognitive performance. These results unveil a role for NCLX as a novel modulator of astrocytic glucose metabolism, impacting on cognition.


Assuntos
Astrócitos , Cálcio , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Mitocôndrias/metabolismo , Glicólise , Cognição , Sódio/metabolismo , Sinalização do Cálcio/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 324(4): H443-H460, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763506

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) is defined as HF with an ejection fraction (EF) ≥ 50% and elevated cardiac diastolic filling pressures. The underlying causes of HFpEF are multifactorial and not well-defined. A transgenic mouse with low levels of cardiomyocyte (CM)-specific inducible Cavß2a expression (ß2a-Tg mice) showed increased cytosolic CM Ca2+, and modest levels of CM hypertrophy, and fibrosis. This study aimed to determine if ß2a-Tg mice develop an HFpEF phenotype when challenged with two additional stressors, high-fat diet (HFD) and Nω-nitro-l-arginine methyl ester (l-NAME, LN). Four-month-old wild-type (WT) and ß2a-Tg mice were given either normal chow (WT-N, ß2a-N) or HFD and/or l-NAME (WT-HFD, WT-LN, WT-HFD-LN, ß2a-HFD, ß2a-LN, and ß2a-HFD-LN). Some animals were treated with the histone deacetylase (HDAC) (hypertrophy regulators) inhibitor suberoylanilide hydroxamic acid (SAHA) (ß2a-HFD-LN-SAHA). Echocardiography was performed monthly. After 4 mo of treatment, terminal studies were performed including invasive hemodynamics and organs weight measurements. Cardiac tissue was collected. Four months of HFD plus l-NAME treatment did not induce a profound HFpEF phenotype in FVB WT mice. ß2a-HFD-LN (3-Hit) mice developed features of HFpEF, including increased atrial natriuretic peptide (ANP) levels, preserved EF, diastolic dysfunction, robust CM hypertrophy, increased M2-macrophage population, and myocardial fibrosis. SAHA reduced the HFpEF phenotype in the 3-Hit mouse model, by attenuating these effects. The 3-Hit mouse model induced a reliable HFpEF phenotype with CM hypertrophy, cardiac fibrosis, and increased M2-macrophage population. This model could be used for identifying and preclinical testing of novel therapeutic strategies.NEW & NOTEWORTHY Our study shows that three independent pathological stressors (increased Ca2+ influx, high-fat diet, and l-NAME) together produce a profound HFpEF phenotype. The primary mechanisms include HDAC-dependent-CM hypertrophy, necrosis, increased M2-macrophage population, fibroblast activation, and myocardial fibrosis. A role for HDAC activation in the HFpEF phenotype was shown in studies with SAHA treatment, which prevented the severe HFpEF phenotype. This "3-Hit" mouse model could be helpful in identifying novel therapeutic strategies to treat HFpEF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Camundongos , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Camundongos Transgênicos , Fibrose , Fenótipo , Hipertrofia
9.
Nature ; 545(7652): 93-97, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445457

RESUMO

Mitochondrial calcium (mCa2+) has a central role in both metabolic regulation and cell death signalling, however its role in homeostatic function and disease is controversial. Slc8b1 encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), which is proposed to be the primary mechanism for mCa2+ extrusion in excitable cells. Here we show that tamoxifen-induced deletion of Slc8b1 in adult mouse hearts causes sudden death, with less than 13% of affected mice surviving after 14 days. Lethality correlated with severe myocardial dysfunction and fulminant heart failure. Mechanistically, cardiac pathology was attributed to mCa2+ overload driving increased generation of superoxide and necrotic cell death, which was rescued by genetic inhibition of mitochondrial permeability transition pore activation. Corroborating these findings, overexpression of NCLX in the mouse heart by conditional transgenesis had the beneficial effect of augmenting mCa2+ clearance, preventing permeability transition and protecting against ischaemia-induced cardiomyocyte necrosis and heart failure. These results demonstrate the essential nature of mCa2+ efflux in cellular function and suggest that augmenting mCa2+ efflux may be a viable therapeutic strategy in disease.


Assuntos
Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Sobrevivência Celular , Morte Súbita , Feminino , Deleção de Genes , Células HeLa , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trocador de Sódio e Cálcio/genética , Superóxidos/metabolismo , Tamoxifeno/farmacologia , Remodelação Ventricular
10.
Mol Cell ; 60(1): 47-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387735

RESUMO

Mitochondrial permeability transition is a phenomenon in which the mitochondrial permeability transition pore (PTP) abruptly opens, resulting in mitochondrial membrane potential (ΔΨm) dissipation, loss of ATP production, and cell death. Several genetic candidates have been proposed to form the PTP complex, however, the core component is unknown. We identified a necessary and conserved role for spastic paraplegia 7 (SPG7) in Ca(2+)- and ROS-induced PTP opening using RNAi-based screening. Loss of SPG7 resulted in higher mitochondrial Ca(2+) retention, similar to cyclophilin D (CypD, PPIF) knockdown with sustained ΔΨm during both Ca(2+) and ROS stress. Biochemical analyses revealed that the PTP is a heterooligomeric complex composed of VDAC, SPG7, and CypD. Silencing or disruption of SPG7-CypD binding prevented Ca(2+)- and ROS-induced ΔΨm depolarization and cell death. This study identifies an ubiquitously expressed IMM integral protein, SPG7, as a core component of the PTP at the OMM and IMM contact site.


Assuntos
Ciclofilinas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sítios de Ligação , Cálcio/metabolismo , Morte Celular , Ciclofilinas/química , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Metaloendopeptidases/química , Membranas Mitocondriais/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo
11.
J Mol Cell Cardiol ; 167: 52-66, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358843

RESUMO

Mitochondrial calcium (mCa2+) uptake couples changes in cardiomyocyte energetic demand to mitochondrial ATP production. However, excessive mCa2+ uptake triggers permeability transition and necrosis. Despite these established roles during acute stress, the involvement of mCa2+ signaling in cardiac adaptations to chronic stress remains poorly defined. Changes in NCLX expression are reported in heart failure (HF) patients and models of cardiac hypertrophy. Therefore, we hypothesized that altered mCa2+ homeostasis contributes to the hypertrophic remodeling of the myocardium that occurs upon a sustained increase in cardiac workload. The impact of mCa2+ flux on cardiac function and remodeling was examined by subjecting mice with cardiomyocyte-specific overexpression (OE) of the mitochondrial Na+/Ca2+ exchanger (NCLX), the primary mediator of mCa2+ efflux, to several well-established models of hypertrophic and non-ischemic HF. Cardiomyocyte NCLX-OE preserved contractile function, prevented hypertrophy and fibrosis, and attenuated maladaptive gene programs in mice subjected to chronic pressure overload. Hypertrophy was attenuated in NCLX-OE mice, prior to any decline in cardiac contractility. NCLX-OE similarly attenuated deleterious cardiac remodeling in mice subjected to chronic neurohormonal stimulation. However, cardiomyocyte NCLX-OE unexpectedly reduced overall survival in mice subjected to severe neurohormonal stress with angiotensin II + phenylephrine. Adenoviral NCLX expression limited mCa2+ accumulation, oxidative metabolism, and de novo protein synthesis during hypertrophic stimulation of cardiomyocytes in vitro. Our findings provide genetic evidence for the contribution of mCa2+ to early pathological remodeling in non-ischemic heart disease, but also highlight a deleterious consequence of increasing mCa2+ efflux when the heart is subjected to extreme, sustained neurohormonal stress.


Assuntos
Insuficiência Cardíaca , Trocador de Sódio e Cálcio , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Remodelação Ventricular
12.
J Mol Cell Cardiol ; 172: 78-89, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988357

RESUMO

BACKGROUND: Fibrosis and extracellular matrix remodeling are mediated by resident cardiac fibroblasts (CFs). In response to injury, fibroblasts activate, differentiating into specialized synthetic and contractile myofibroblasts producing copious extracellular matrix proteins (e.g., collagens). Myofibroblast persistence in chronic diseases, such as HF, leads to progressive cardiac dysfunction and maladaptive remodeling. We recently reported that an increase in αKG (alpha-ketoglutarate) bioavailability, which contributes to enhanced αKG-dependent lysine demethylase activity and chromatin remodeling, is required for myofibroblast formation. Therefore, we aimed to determine the substrates and metabolic pathways contributing to αKG biosynthesis and their requirement for myofibroblast formation. METHODS: Stable isotope metabolomics identified glutaminolysis as a key metabolic pathway required for αKG biosynthesis and myofibroblast formation, therefore we tested the effects of pharmacologic inhibition (CB-839) or genetic deletion of glutaminase (Gls1-/-) on myofibroblast formation in both murine and human cardiac fibroblasts. We employed immunofluorescence staining, functional gel contraction, western blotting, and bioenergetic assays to determine the myofibroblast phenotype. RESULTS: Carbon tracing indicated enhanced glutaminolysis mediating increased αKG abundance. Pharmacological and genetic inhibition of glutaminolysis prevented myofibroblast formation indicated by a reduction in αSMA+ cells, collagen gel contraction, collagen abundance, and the bioenergetic response. Inhibition of glutaminolysis also prevented TGFß-mediated histone demethylation and supplementation with cell-permeable αKG rescued the myofibroblast phenotype. Importantly, inhibition of glutaminolysis was sufficient to prevent myofibroblast formation in CFs isolated from the human failing heart. CONCLUSIONS: These results define glutaminolysis as necessary for myofibroblast formation and persistence, providing substantial rationale to evaluate several new therapeutic targets to treat cardiac fibrosis.


Assuntos
Miofibroblastos , Humanos , Camundongos , Animais , Miofibroblastos/metabolismo , Glutamina/metabolismo , Fibroblastos/metabolismo , Colágeno/metabolismo , Células Cultivadas
13.
Circ Res ; 127(3): 427-447, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32673537

RESUMO

Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFß (transforming growth factor ß) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.


Assuntos
Diferenciação Celular , Metabolismo Energético , Cardiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miofibroblastos/metabolismo , Animais , Sinalização do Cálcio , Fibrose , Cardiopatias/patologia , Humanos , Mitocôndrias Cardíacas/patologia , Miofibroblastos/patologia
14.
Am J Physiol Heart Circ Physiol ; 321(6): H1014-H1029, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623184

RESUMO

Heart failure is the one of the leading causes of death in the United States. Heart failure is a complex syndrome caused by numerous diseases, including severe myocardial infarction (MI). MI occurs after an occlusion of a cardiac artery causing downstream ischemia. MI is followed by cardiac remodeling involving extensive remodeling and fibrosis, which, if the original insult is severe or prolonged, can ultimately progress into heart failure. There is no "cure" for heart failure because therapies to regenerate dead tissue are not yet available. Previous studies have shown that in both post-MI and post-ischemia-reperfusion (I/R) models of heart failure, administration of cortical bone stem cell (CBSC) treatment leads to a reduction in scar size and improved cardiac function. Our first study investigated the ability of mouse CBSC-derived exosomes (mCBSC-dEXO) to recapitulate mouse CBSCs (mCBSC) therapeutic effects in a 24-h post-I/R model. This study showed that injection of mCBSCs and mCBSC-dEXOs into the ischemic region of an infarct had a protective effect against I/R injury. mCBSC-dEXOs recapitulated the effects of CBSC treatment post-I/R, indicating exosomes are partly responsible for CBSC's beneficial effects. To examine if exosomes decrease fibrotic activation, adult rat ventricular fibroblasts (ARVFs) and adult human cardiac fibroblasts (NHCFs) were treated with transforming growth factor ß (TGFß) to activate fibrotic signaling before treatment with mCBSC- and human CBSC (hCBSC)-dEXOs. hCBSC-dEXOs caused a 100-fold decrease in human fibroblast activation. To further understand the signaling mechanisms regulating the protective decrease in fibrosis, we performed RNA sequencing on the NHCFs after hCBSC-dEXO treatment. The group treated with both TGFß and exosomes showed a decrease in small nucleolar RNA (snoRNA), known to be involved with ribosome stability.NEW & NOTEWORTHY Our work is noteworthy due to the identification of factors within stem cell-derived exosomes (dEXOs) that alter fibroblast activation through the hereto-unknown mechanism of decreasing small nucleolar RNA (snoRNA) signaling within cardiac fibroblasts. The study also shows that the injection of stem cells or a stem-cell-derived exosome therapy at the onset of reperfusion elicits cardioprotection, emphasizing the importance of early treatment in the post-ischemia-reperfusion (I/R) wounded heart.


Assuntos
Osso Cortical/citologia , Exossomos/transplante , Fibroblastos/patologia , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/cirurgia , Miocárdio/patologia , Transplante de Células-Tronco , Remodelação Ventricular , Animais , Células Cultivadas , Modelos Animais de Doenças , Exossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
15.
FASEB J ; 34(4): 5642-5657, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100368

RESUMO

The adult mammalian heart has a limited regenerative capacity. Therefore, identification of endogenous cells and mechanisms that contribute to cardiac regeneration is essential for the development of targeted therapies. The side population (SP) phenotype has been used to enrich for stem cells throughout the body; however, SP cells isolated from the heart have been studied exclusively in cell culture or after transplantation, limiting our understanding of their function in vivo. We generated a new Abcg2-driven lineage-tracing mouse model with efficient labeling of SP cells. Labeled SP cells give rise to terminally differentiated cells in bone marrow and intestines. In the heart, labeled SP cells give rise to lineage-traced cardiomyocytes under homeostatic conditions with an increase in this contribution following cardiac injury. Instead of differentiating into cardiomyocytes like proposed cardiac progenitor cells, cardiac SP cells fuse with preexisting cardiomyocytes to stimulate cardiomyocyte cell cycle reentry. Our study is the first to show that fusion between cardiomyocytes and non-cardiomyocytes, identified by the SP phenotype, contribute to endogenous cardiac regeneration by triggering cardiomyocyte cell cycle reentry in the adult mammalian heart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Diferenciação Celular , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Regeneração , Células da Side Population/citologia , Animais , Transplante de Medula Óssea , Linhagem da Célula , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Células da Side Population/metabolismo
16.
J Mol Cell Cardiol ; 143: 163-174, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32353353

RESUMO

Since the identification of the mitochondrial calcium uniporter (MCU) in 2011, several studies utilizing genetic models have attempted to decipher the role of mitochondrial calcium uptake in cardiac physiology. Confounding results in various mutant mouse models have led to an ongoing debate regarding the function of MCU in the heart. In this review, we evaluate and discuss the totality of evidence for mitochondrial calcium uptake in the cardiac stress response and highlight recent reports that implicate MCU in the control of homeostatic cardiac metabolism and function. This review concludes with a discussion of current gaps in knowledge and remaining experiments to define how MCU contributes to contractile function, cell death, metabolic regulation, and heart failure progression.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Coração/fisiologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Suscetibilidade a Doenças , Humanos , Estresse Fisiológico
17.
Circulation ; 140(21): 1720-1733, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31533452

RESUMO

BACKGROUND: The mitochondrial calcium uniporter (mtCU) is an ≈700-kD multisubunit channel residing in the inner mitochondrial membrane required for mitochondrial Ca2+ (mCa2+) uptake. Here, we detail the contribution of MCUB, a paralog of the pore-forming subunit MCU, in mtCU regulation and function and for the first time investigate the relevance of MCUB to cardiac physiology. METHODS: We created a stable MCUB knockout cell line (MCUB-/-) using CRISPR-Cas9n technology and generated a cardiac-specific, tamoxifen-inducible MCUB mutant mouse (CAG-CAT-MCUB x MCM; MCUB-Tg) for in vivo assessment of cardiac physiology and response to ischemia/reperfusion injury. Live-cell imaging and high-resolution spectrofluorometery were used to determine intracellular Ca2+ exchange and size-exclusion chromatography; blue native page and immunoprecipitation studies were used to determine the molecular function and impact of MCUB on the high-molecular-weight mtCU complex. RESULTS: Using genetic gain- and loss-of-function approaches, we show that MCUB expression displaces MCU from the functional mtCU complex and thereby decreases the association of mitochondrial calcium uptake 1 and 2 (MICU1/2) to alter channel gating. These molecular changes decrease MICU1/2-dependent cooperative activation of the mtCU, thereby decreasing mCa2+ uptake. Furthermore, we show that MCUB incorporation into the mtCU is a stress-responsive mechanism to limit mCa2+ overload during cardiac injury. Indeed, overexpression of MCUB is sufficient to decrease infarct size after ischemia/reperfusion injury. However, MCUB incorporation into the mtCU does come at a cost; acute decreases in mCa2+ uptake impair mitochondrial energetics and contractile function. CONCLUSIONS: We detail a new regulatory mechanism to modulate mtCU function and mCa2+ uptake. Our results suggest that MCUB-dependent changes in mtCU stoichiometry are a prominent regulatory mechanism to modulate mCa2+ uptake and cellular physiology.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Sistemas CRISPR-Cas , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Técnicas de Inativação de Genes , Células HeLa , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Função Ventricular Esquerda
20.
Circ Res ; 128(8): 1205-1207, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33856917
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA