Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Hum Genet ; 99(4): 802-816, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616483

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated cation channels that mediate excitatory synaptic transmission. Genetic mutations in multiple NMDAR subunits cause various childhood epilepsy syndromes. Here, we report a de novo recurrent heterozygous missense mutation-c.1999G>A (p.Val667Ile)-in a NMDAR gene previously unrecognized to harbor disease-causing mutations, GRIN2D, identified by exome and candidate panel sequencing in two unrelated children with epileptic encephalopathy. The resulting GluN2D p.Val667Ile exchange occurs in the M3 transmembrane domain involved in channel gating. This gain-of-function mutation increases glutamate and glycine potency by 2-fold, increases channel open probability by 6-fold, and reduces receptor sensitivity to endogenous negative modulators such as extracellular protons. Moreover, this mutation prolongs the deactivation time course after glutamate removal, which controls the synaptic time course. Transfection of cultured neurons with human GRIN2D cDNA harboring c.1999G>A leads to dendritic swelling and neuronal cell death, suggestive of excitotoxicity mediated by NMDAR over-activation. Because both individuals' seizures had proven refractory to conventional antiepileptic medications, the sensitivity of mutant NMDARs to FDA-approved NMDAR antagonists was evaluated. Based on these results, oral memantine was administered to both children, with resulting mild to moderate improvement in seizure burden and development. The older proband subsequently developed refractory status epilepticus, with dramatic electroclinical improvement upon treatment with ketamine and magnesium. Overall, these results suggest that NMDAR antagonists can be useful as adjuvant epilepsy therapy in individuals with GRIN2D gain-of-function mutations. This work further demonstrates the value of functionally evaluating a mutation, enabling mechanistic understanding and therapeutic modeling to realize precision medicine for epilepsy.


Assuntos
Genes Dominantes/genética , Mutação , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Sequência de Aminoácidos , Sequência de Bases , Morte Celular , Criança , Análise Mutacional de DNA , Dendritos/patologia , Eletroencefalografia , Exoma/genética , Feminino , Ácido Glutâmico/metabolismo , Humanos , Lactente , Recém-Nascido , Ketamina/uso terapêutico , Magnésio/uso terapêutico , Memantina/administração & dosagem , Memantina/uso terapêutico , Modelos Moleculares , Medicina de Precisão , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/metabolismo , Espasmos Infantis/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(10): 4081-6, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431145

RESUMO

The cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a "protomap" in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The "intermediate map" in the SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 → Eomes → Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Padronização Corporal , Mapeamento Encefálico , Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Gravidez , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética
3.
Dev Dyn ; 243(3): 440-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550175

RESUMO

BACKGROUND: Development of the olfactory bulb (OB) is a complex process that requires contributions from several progenitor cell niches to generate neuronal diversity. Previous studies showed that Tbr2 is expressed during the generation of glutamatergic OB neurons in rodents. However, relatively little is known about the role of Tbr2 in the developing OB or in the subventricular zone-rostral migratory stream (SVZ-RMS) germinal niche that gives rise to many OB neurons. RESULTS: Here, we use conditional gene ablation strategies to knockout Tbr2 during embryonic mouse olfactory bulb morphogenesis, as well as during perinatal and adult neurogenesis from the SVZ-RMS niche, and describe the resulting phenotypes. We find that Tbr2 is important for the generation of mitral cells in the OB, and that the olfactory bulbs themselves are hypoplastic and disorganized in Tbr2 mutant mice. Furthermore, we show that the SVZ-RMS niche is expanded and disordered following loss of Tbr2, which leads to ectopic accumulation of neuroblasts in the RMS. Lastly, we show that adult glutamatergic neurogenesis from the SVZ is impaired by loss of Tbr2. CONCLUSIONS: Tbr2 is essential for proper morphogenesis of the OB and SVZ-RMS, and is important for the generation of multiple lineages of glutamatergic olfactory bulb neurons.


Assuntos
Morfogênese/fisiologia , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/embriologia , Neurônios Receptores Olfatórios/embriologia , Proteínas com Domínio T/metabolismo , Animais , Deleção de Genes , Camundongos , Camundongos Mutantes , Células-Tronco Neurais/citologia , Bulbo Olfatório/citologia , Neurônios Receptores Olfatórios/citologia , Proteínas com Domínio T/genética
4.
J Neurosci ; 33(9): 4165-80, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447624

RESUMO

The dentate gyrus (DG) is a unique cortical region whose protracted development spans the embryonic and early postnatal periods. DG development involves large-scale reorganization of progenitor cell populations, ultimately leading to the establishment of the subgranular zone neurogenic niche. In the developing DG, the T-box transcription factor Tbr2 is expressed in both Cajal-Retzius cells derived from the cortical hem that guide migration of progenitors and neurons to the DG, and intermediate neuronal progenitors born in the dentate neuroepithelium that give rise to granule neurons. Here we show that in mice Tbr2 is required for proper migration of Cajal-Retzius cells to the DG; and, in the absence of Tbr2, formation of the hippocampal fissure is abnormal, leading to aberrant development of the transhilar radial glial scaffold and impaired migration of progenitors and neuroblasts to the developing DG. Furthermore, loss of Tbr2 results in decreased expression of Cxcr4 in migrating cells, leading to a premature burst of granule neurogenesis during early embryonic development accompanied by increased cell death in mutant animals. Formation of the transient subpial neurogenic zone was abnormal in Tbr2 conditional knock-outs, and the stem cell population in the DG was depleted before proper establishment of the subgranular zone. These studies indicate that Tbr2 is explicitly required for morphogenesis of the DG and participates in multiple aspects of the intricate developmental process of this structure.


Assuntos
Giro Denteado/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/metabolismo , Neurônios/fisiologia , Proteínas com Domínio T/metabolismo , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina , Diferenciação Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Giro Denteado/embriologia , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurogênese/genética , Neurônios/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Nicho de Células-Tronco/fisiologia , Proteínas com Domínio T/genética , Tamoxifeno/farmacologia , Proteínas Supressoras de Tumor/metabolismo
5.
J Neurosci ; 33(8): 3633-45, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426690

RESUMO

P/Q-type voltage-gated calcium channels (Ca(v)2.1) play critical presynaptic and postsynaptic roles throughout the nervous system and have been implicated in a variety of neurological disorders. Here we report that mice with a genetic ablation of the Ca(v)2.1 pore-forming α(1A) subunit (α(1A)⁻/⁻) encoded by CACNA1a (Jun et al., 1999) suffer during postnatal development from increasing breathing disturbances that lead ultimately to death. Breathing abnormalities include decreased minute ventilation and a specific loss of sighs, which was associated with lung atelectasis. Similar respiratory alterations were preserved in the isolated in vitro brainstem slice preparation containing the pre-Bötzinger complex. The loss of Ca(v)2.1 was associated with an alteration in the functional dependency on N-type calcium channels (Ca(v)2.2). Blocking N-type calcium channels with conotoxin GVIA had only minor effects on respiratory activity in slices from control (CT) littermates, but abolished respiratory activity in all slices from α(1A)⁻/⁻ mice. The amplitude of evoked EPSPs was smaller in inspiratory neurons from α(1A)⁻/⁻ mice compared with CTs. Conotoxin GVIA abolished all EPSPs in inspiratory neurons from α(1A)⁻/⁻ mice, while the EPSP amplitude was reduced by only 30% in CT mice. Moreover, neuromodulation was significantly altered as muscarine abolished respiratory network activity in α(1A)⁻/⁻ mice but not in CT mice. We conclude that excitatory synaptic transmission dependent on N-type and P/Q-type calcium channels is required for stable breathing and sighing. In the absence of P/Q-type calcium channels, breathing, sighing, and neuromodulation are severely compromised, leading to early mortality.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Mecânica Respiratória/fisiologia , Animais , Animais Recém-Nascidos , Tronco Encefálico/fisiologia , Canais de Cálcio Tipo N/deficiência , Canais de Cálcio Tipo P/deficiência , Canais de Cálcio Tipo P/fisiologia , Canais de Cálcio Tipo Q/deficiência , Canais de Cálcio Tipo Q/fisiologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Técnicas de Cultura de Órgãos , Mecânica Respiratória/genética
6.
Cereb Cortex ; 23(8): 1884-900, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22735158

RESUMO

Progenitor cells undergo a series of stable identity transitions on their way to becoming fully differentiated cells with unique identities. Each cellular transition requires that new sets of genes are expressed, while alternative genetic programs are concurrently repressed. Here, we investigated how the proneural gene Neurog2 simultaneously activates and represses alternative gene expression programs in the developing neocortex. By comparing the activities of transcriptional activator (Neurog2-VP16) and repressor (Neurog2-EnR) fusions to wild-type Neurog2, we first demonstrate that Neurog2 functions as an activator to both extinguish Pax6 expression in radial glial cells and initiate Tbr2 expression in intermediate neuronal progenitors. Similarly, we show that Neurog2 functions as an activator to promote the differentiation of neurons with a dorsal telencephalic (i.e., neocortical) identity and to block a ventral fate, identifying 2 Neurog2-regulated transcriptional programs involved in the latter. First, we show that the Neurog2-transcriptional target Tbr2 is a direct transcriptional repressor of the ventral gene Ebf1. Secondly, we demonstrate that Neurog2 indirectly turns off Etv1 expression, which in turn indirectly regulates the expression of the ventral proneural gene Ascl1. Neurog2 thus activates several genetic off-switches, each with distinct transcriptional targets, revealing an unappreciated level of specificity for how Neurog2 prevents inappropriate gene expression during neocortical development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/embriologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , DNA/metabolismo , Camundongos , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Proteínas Repressoras/genética
7.
Proc Natl Acad Sci U S A ; 107(29): 13129-34, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615956

RESUMO

Areas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitose , Neocórtex/citologia , Neocórtex/embriologia , Neurônios/citologia , Animais , Biomarcadores/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação/genética , Neocórtex/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Ligação Proteica , Proteínas com Domínio T , Fatores de Transcrição , Ativação Transcricional , Regulação para Cima/genética
8.
Dev Biol ; 335(1): 78-92, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19732764

RESUMO

During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and autism spectrum disorders.


Assuntos
Transtorno Autístico/genética , Movimento Celular/fisiologia , Cerebelo , Nervo Facial/citologia , Neurônios Motores/fisiologia , Proteínas Proto-Oncogênicas c-met , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Transtorno Autístico/metabolismo , Proliferação de Células , Cerebelo/anatomia & histologia , Cerebelo/embriologia , Criança , Humanos , Ligantes , Camundongos , Neurônios Motores/citologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Front Neurosci ; 14: 598548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488348

RESUMO

Previous studies demonstrated specific expression of transcription factor Tbr2 in unipolar brush cells (UBCs) of the cerebellum during development and adulthood. To further study UBCs and the role of Tbr2 in their development we examined UBC morphology in transgenic mouse lines (reporter and lineage tracer) and also examined the effects of Tbr2 deficiency in Tbr2 (MGI: Eomes) conditional knock-out (cKO) mice. In Tbr2 reporter and lineage tracer cerebellum, UBCs exhibited more complex morphologies than previously reported including multiple dendrites, bifurcating dendrites, and up to four dendritic brushes. We propose that "dendritic brush cells" (DBCs) may be a more apt nomenclature. In Tbr2 cKO cerebellum, mature UBCs were completely absent. Migration of UBC precursors from rhombic lip to cerebellar cortex and other nuclei was impaired in Tbr2 cKO mice. Our results indicate that UBC migration and differentiation are sensitive to Tbr2 deficiency. To investigate whether UBCs develop similarly in humans as in rodents, we studied Tbr2 expression in mid-gestational human cerebellum. Remarkably, Tbr2+ UBC precursors migrate along the same pathways in humans as in rodent cerebellum and disperse to create the same "fountain-like" appearance characteristic of UBCs exiting the rhombic lip.

10.
Stem Cell Reports ; 15(1): 22-37, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32559460

RESUMO

Neurons differentiated from induced pluripotent stem cells (iPSCs) typically show regular spiking and synaptic activity but lack more complex network activity critical for brain development, such as periodic depolarizations including simultaneous involvement of glutamatergic and GABAergic neurotransmission. We generated human iPSC-derived neurons exhibiting spontaneous oscillatory activity after cultivation of up to 6 months, which resembles early oscillations observed in rodent neurons. This behavior was found in neurons generated using a more "native" embryoid body protocol, in contrast to a "fast" protocol based on NGN2 overexpression. A comparison with published data indicates that EB-derived neurons reach the maturity of neurons of the third trimester and NGN2-derived neurons of the second trimester of human gestation. Co-culturing NGN2-derived neurons with astrocytes only led to a partial compensation and did not reliably induce complex network activity. Our data will help selection of the appropriate iPSC differentiation assay to address specific questions related to neurodevelopmental disorders.


Assuntos
Diferenciação Celular , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/citologia , Sinapses/metabolismo , Proliferação de Células , Fenômenos Eletrofisiológicos , Corpos Embrioides/citologia , Humanos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo
11.
Dev Biol ; 314(2): 376-92, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18191121

RESUMO

During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain.


Assuntos
Aminoacil-tRNA Sintetases/fisiologia , Desenvolvimento Embrionário/fisiologia , Morfogênese/fisiologia , Rombencéfalo/embriologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Ventrículos Cerebrais/embriologia , Primers do DNA , Hibridização In Situ , Neuropeptídeos/fisiologia , Fenótipo , Prosencéfalo/embriologia , RNA Mensageiro/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética
12.
Front Neurosci ; 12: 571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186101

RESUMO

Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.

13.
Cell Rep ; 16(1): 92-105, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320921

RESUMO

Intermediate progenitors (IPs) amplify the production of pyramidal neurons, but their role in selective genesis of cortical layers or neuronal subtypes remains unclear. Using genetic lineage tracing in mice, we find that IPs destined to produce upper cortical layers first appear early in corticogenesis, by embryonic day 11.5. During later corticogenesis, IP laminar fates are progressively limited to upper layers. We examined the role of Tbr2, an IP-specific transcription factor, in laminar fate regulation using Tbr2 conditional mutant mice. Upon Tbr2 inactivation, fewer neurons were produced by immediate differentiation and laminar fates were shifted upward. Genesis of subventricular mitoses was, however, not reduced in the context of a Tbr2-null cortex. Instead, neuronal and laminar differentiation were disrupted and delayed. Our findings indicate that upper-layer genesis depends on IPs from many stages of corticogenesis and that Tbr2 regulates the tempo of laminar fate implementation for all cortical layers.


Assuntos
Córtex Cerebral/citologia , Neurônios/citologia , Células-Tronco/citologia , Proteínas com Domínio T/metabolismo , Animais , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos/citologia , Regulação da Expressão Gênica , Camundongos Knockout , Mitose , Atividade Motora , Neurogênese , Proteínas com Domínio T/deficiência , Fatores de Transcrição/metabolismo
15.
Front Neural Circuits ; 7: 179, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24273495

RESUMO

The pre-Bötzinger complex (preBötC), an area that is critical for generating breathing (eupnea), gasps and sighs is continuously modulated by catecholamines. These amines and the generation of sighs have also been implicated in the regulation of arousal. Here we studied the catecholaminergic modulation of sighs not only in anesthetized freely breathing mice (in vivo), but also in medullary slice preparations that contain the preBötC and that generate fictive eupneic and sigh rhythms in vitro. We demonstrate that activating ß-noradrenergic receptors (ß-NR) specifically increases the frequency of sighs, while eupnea remains unaffected both in vitro and in vivo. ß-NR activation specifically increased the frequency of intrinsically bursting pacemaker neurons that rely on persistent sodium current (I(Nap)). By contrast, all parameters of bursting pacemakers that rely on the non-specific cation current (I(CAN)) remained unaffected. Moreover, riluzole, which blocks bursting in I(Nap) pacemakers abolished sighs altogether, while flufenamic acid (FFA) which blocks the I(CAN) current did not alter the sigh-increasing effect caused by ß-NR. Our results suggest that the selective ß-NR action of sighs may result from the modulation of I(Nap) pacemaker activity and that disturbances in noradrenergic system may contribute to abnormal arousal response. The ß-NR action on the preBötC may be an important mechanism in modulating behaviors that are specifically associated with sighs, such as the regulation of the early events leading to the arousal response.


Assuntos
Nível de Alerta/fisiologia , Ácido Flufenâmico/farmacologia , Receptores Adrenérgicos beta/fisiologia , Respiração/efeitos dos fármacos , Centro Respiratório/fisiologia , Riluzol/farmacologia , Animais , Nível de Alerta/efeitos dos fármacos , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Centro Respiratório/efeitos dos fármacos
16.
Semin Pediatr Neurol ; 16(3): 155-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19778712

RESUMO

Congenital malformations of the human hindbrain, including the cerebellum, are poorly understood largely because their recognition is a relatively recent advance for imaging diagnostics. Cerebellar malformations are the most obvious and best characterized hindbrain malformations due to their relative ease of viewing by magnetic resonance imaging and the recent identification of several causative genes (Millen et al. Curr Opin Neurobiol 18:12-19, 2008). Malformations of the pons and medulla have also been described both in isolation and in association with cerebellar malformations (Barkovich et al. Ann Neurol 62:625-639, 2007). Although little is understood regarding the specific developmental pathologies underlying hindbrain malformations in humans, much is known regarding the mechanisms and genes driving hindbrain development in vertebrate model organisms. Thus, studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to provide information regarding disrupted developmental processes and candidate genes. Here, we survey the basic principles of vertebrate hindbrain development and integrate our current knowledge of human hindbrain malformations into this framework.


Assuntos
Encefalopatias/genética , Rombencéfalo/anormalidades , Rombencéfalo/crescimento & desenvolvimento , Animais , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Cerebelo/anormalidades , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Modelos Animais de Doenças , Humanos
17.
Dev Biol ; 309(2): 358-72, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17651720

RESUMO

Despite 30 years of Hox gene study, we have a remarkably limited knowledge of the downstream target genes that Hox transcription factors regulate to confer regional identity. Here, we have used a microarray approach to identify genes that function downstream of a single vertebrate Hox gene, zebrafish hoxb1a. This gene plays a critical and conserved role in vertebrate hindbrain development, conferring identity to hindbrain rhombomere (r) 4. For example, zebrafish Hoxb1a, similar to mouse Hoxb1, is required for the migration of r4-derived facial branchiomotor neurons into the posterior hindbrain. We have screened microarrays carrying more than 16,000 expressed sequence tags (ESTs) for genes that are differentially regulated in normal versus Hoxb1a-deficient r4 tissue. Using this approach, we have identified both positively and negatively regulated candidate Hoxb1a target genes. We have used in situ hybridization to validate twelve positively regulated Hoxb1a targets. These downstream targets are expressed in a variety of subdomains within r4, with one gene, a novel prickle homolog (pk1b), expressed specifically within the facial branchiomotor neurons. Using morpholino knock-down and cell transplantation, we demonstrate that the Hoxb1a target Prickle1b functions cell-autonomously to control facial neuron migration, a single aspect of r4 identity.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Movimento Celular , Etiquetas de Sequências Expressas , Face/inervação , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas com Domínio LIM , Neurônios Motores/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA