Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 53(29): 6938-43, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25322402

RESUMO

This paper describes the integration of a short pulse optical parametric amplifier into the chirped pulse amplification beam lines of the Orion laser facility. This enables Orion to generate petawatt laser pulses at 1054 nm with a nanosecond contrast of >10(10). By combining this with frequency-doubling post compression, we can generate 100 J, 500 fs laser pulses with a nanosecond contrast calculated to be ∼10(18).

2.
Appl Opt ; 52(18): 4258-63, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23842168

RESUMO

This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

3.
Appl Opt ; 52(15): 3597-607, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736246

RESUMO

The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

4.
Opt Lett ; 33(23): 2797-9, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19037430

RESUMO

We report on 260 fs transform-limited pulses generated directly by an optical Stark passively mode-locked semiconductor disk laser at a 1 GHz repetition rate. A surface recombination semiconductor saturable absorber mirror and a step-index gain structure are used. Numerical propagation modeling of the optical Stark effect confirms that this mechanism is able to form the pulses that we observe.

5.
Opt Lett ; 33(18): 2125-7, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18794952

RESUMO

We report what we believe to be the first demonstration of an all-semiconductor room-temperature terahertz time domain spectrometer. An optical Stark mode-locked vertical-external-cavity surface-emitting laser with 480 fs pulses at 1044 nm was used to illuminate low-temperature-grown photoconductive antennae with 5 mum-gap bow-tie-shaped electrodes. The coherently detected spectrum has a bandwidth close to 1 THz, in which water absorption lines at 0.555 and 0.751 THz can be resolved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA