Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Immunity ; 55(11): 2103-2117.e10, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323311

RESUMO

The surface of the central nervous system (CNS) is protected by the meninges, which contain a dense network of meningeal macrophages (MMs). Here, we examined the role of tissue-resident MM in viral infection. MHC-II- MM were abundant neonatally, whereas MHC-II+ MM appeared over time. These barrier macrophages differentially responded to in vivo peripheral challenges such as LPS, SARS-CoV-2, and lymphocytic choriomeningitis virus (LCMV). Peripheral LCMV infection, which was asymptomatic, led to a transient infection and activation of the meninges. Mice lacking macrophages but conserving brain microglia, or mice bearing macrophage-specific deletion of Stat1 or Ifnar, exhibited extensive viral spread into the CNS. Transcranial pharmacological depletion strategies targeting MM locally resulted in several areas of the meninges becoming infected and fatal meningitis. Low numbers of MHC-II+ MM, which is seen upon LPS challenge or in neonates, corelated with higher viral load upon infection. Thus, MMs protect against viral infection and may present targets for therapeutic manipulation.


Assuntos
COVID-19 , Coriomeningite Linfocítica , Animais , Camundongos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos , Meninges
2.
Eur J Immunol ; 53(9): e2250267, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37402972

RESUMO

In the past 10 years, important discoveries have been made in the field of neuroimmunology, especially regarding brain borders. Indeed, meninges are protective envelopes surrounding the CNS and are currently in the spotlight, with multiple studies showing their involvement in brain infection and cognitive disorders. In this review, we describe the meningeal layers and their protective role in the CNS against bacterial, viral, fungal, and parasitic infections, by immune and nonimmune cells. Moreover, we discuss the neurological and cognitive consequences resulting from meningeal infections in neonates (e.g. infection with group B Streptococcus, cytomegalovirus, …) or adults (e.g. infection with Trypanosoma brucei, Streptococcus pneumoniae, …). We hope that this review will bring to light an integrated view of meningeal immune regulations during CNS infections and their neurological consequences.


Assuntos
Infecções do Sistema Nervoso Central , Meninges , Adulto , Recém-Nascido , Humanos , Encéfalo , Streptococcus pneumoniae
3.
J Inflamm (Lond) ; 21(1): 3, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291415

RESUMO

The brain and spinal cord collectively referred to as the Central Nervous System (CNS) are protected by the blood-brain barrier that limits molecular, microbial and immunological trafficking. However, in the last decade, many studies have emphasized the protective role of 'border regions' at the surface of the CNS which are highly immunologically active, in contrast with the CNS parenchyma. In the steady-state, lymphoid and myeloid cells residing in the cranial meninges can affect brain function and behavior. Upon infection, they provide a first layer of protection against microbial neuroinvasion. The maturation of border sites over time enables more effective brain protection in adults as compared to neonates. Here, we provide a comprehensive update on the meningeal immune system and its role in physiological brain function and protection against infectious agents.

4.
STAR Protoc ; 4(1): 102119, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853673

RESUMO

The highly vascularized meninges protect the surface of the central nervous system and contain a dense network of immune cells controlling neuroinfection and neuroinflammation. Here, we present techniques for the immunological and virological assessment of mouse dural meninges. We describe steps for immunophenotyping including meninges extraction and digestion, immunostaining, and flow cytometry. We then describe viral assessment upon lymphocytic choriomeningitis virus infection including steps for fixation of the meninges in the skull, whole-mount immunohistochemistry, and confocal imaging. For complete details on the use and execution of this protocol, please refer to Rebejac et al. (2022).1.


Assuntos
Sistema Nervoso Central , Meninges , Animais , Camundongos , Citometria de Fluxo , Imuno-Histoquímica , Meninges/diagnóstico por imagem , Cabeça
5.
Sci Rep ; 12(1): 8804, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614095

RESUMO

A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in 'cleaning' the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1-4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Citocinas , Inflamação , Sistema Linfático , Meninges , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade
6.
Front Immunol ; 11: 583647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117395

RESUMO

Microglia are specialized resident macrophages of the central nervous system (CNS) that have important functions during neurodevelopment, homeostasis and disease. This mini-review provides an overview of the current tools and approaches for studying microglia in vivo. We focus on tools for labeling microglia, highlighting the advantages and limitations of microglia markers/antibodies and reporter mice. We also discuss techniques for imaging microglia in situ, including in vivo live imaging of brain and retinal microglia. Finally, we review microglia depletion approaches and their use to investigate microglial function in CNS homeostasis and disease.


Assuntos
Microglia/metabolismo , Microglia/fisiologia , Animais , Anticorpos/metabolismo , Biomarcadores/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Homeostase/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA