Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445984

RESUMO

Antibody-dependent enhancement (ADE) has been shown previously for SARS-CoV-1, MERS-CoV, and SARS-CoV-2 infection in vitro. In this study, the first monoclonal antibody (mAb) that causes ADE in a SARS-CoV-2 in vivo model was identified. mAb RS2 against the SARS-CoV-2 S-protein was developed using hybridoma technology. mAb RS2 demonstrated sub-nanomolar affinity and ability to neutralize SARS-CoV-2 infection in vitro with IC50 360 ng/mL. In an animal model of SARS-CoV-2 infection, the dose-dependent protective efficacy of mAb RS2 was revealed. However, in post-exposure prophylaxis, the administration of mAb RS2 led to an increase in the viral load in the respiratory tract of animals. Three groups of blood plasma were examined for antibodies competing with mAb RS2: (1) plasmas from vaccinated donors without COVID-19; (2) plasmas from volunteers with mild symptoms of COVID-19; (3) plasmas from patients with severe COVID-19. It was demonstrated that antibodies competing with mAb RS2 were significantly more often recorded in sera from volunteers with severe COVID-19. The results demonstrated for the first time that in animals, SARS-CoV-2 can induce antibody/antibodies that can elicit ADE. Moreover, in the sera of patients with severe COVID-19, there are antibodies competing for the binding of an epitope that is recognized by the ADE-eliciting mAb.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , SARS-CoV-2/metabolismo , Anticorpos Antivirais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes
2.
Viruses ; 15(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376556

RESUMO

Orthoflavivirus encephalitidis, formerly tick-borne encephalitis virus (TBEV), belongs to the Orthoflavivirus genus. TBEV is transmitted by tick bites and infection with TBEV can lead to serious disorders of the central nervous system. In this study, a new protective monoclonal mouse antibody (mAb) FVN-32, with high binding activity to glycoprotein E of TBEV, was selected and examined in post exposure prophylaxis in a mouse model of TBEV infection. BALB/c mice were injected mAb FVN-32 at doses of 200 µg, 50 µg, and 12.5 µg per mouse one day after a TBEV challenge. mAb FVN-32 showed 37.5% protective efficacy when administered at doses of 200 µg and 50 µg per mouse. The epitope for protective mAb FVN-32 was localized in TBEV glycoprotein E domain I+II, using a set of truncated fragments of glycoprotein E. Additionally, the target site recognized by mAb FVN-32 was defined using combinatorial libraries of peptides. Three-dimensional modeling revealed that the site is dspatially close to the fusion loop, but does not come into contact with it, and is localized in a region between 247 and 254 amino acid residues on the envelope protein. This region is conserved among TBEV-like orthoflaviviruses.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Camundongos , Epitopos , Anticorpos Antivirais , Glicoproteínas , Anticorpos Monoclonais , Camundongos Endogâmicos BALB C
3.
Viruses ; 14(6)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35746695

RESUMO

Vaccinia virus (VACV) is a promising oncolytic agent because it exhibits many characteristic features of an oncolytic virus. However, its effectiveness is limited by the strong antiviral immune response induced by this virus. One possible approach to overcome this limitation is to develop deimmunized recombinant VACV. It is known that VACV p35 is a major protein for B- and T-cell immune response. Despite the relevance of p35, its epitope structure remains insufficiently studied. To determine neutralizing epitopes, a panel of recombinant p35 variants was designed, expressed, and used for mice immunization. Plaque-reduction neutralization tests demonstrated that VACV was only neutralized by sera from mice that were immunized with variants containing both N- and C- terminal regions of p35. This result was confirmed by the depletion of anti-p35 mice sera with recombinant p35 variants. At least nine amino acid residues affecting the immunogenic profile of p35 were identified. Substitutions of seven residues led to disruption of B-cell epitopes, whereas substitutions of two residues resulted in the recognition of the mutant p35 solely by non-neutralizing antibodies.


Assuntos
Vaccinia virus , Vacínia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos de Linfócito B/genética , Camundongos , Testes de Neutralização , Vaccinia virus/genética , Proteínas do Envelope Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA