Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(4): 750-765.e17, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475900

RESUMO

To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Imunidade Inata , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão , Células Dendríticas/patologia , Humanos , Células Matadoras Naturais/patologia , Macrófagos/patologia , Linfócitos T/patologia , Microambiente Tumoral
2.
Genes Dev ; 28(23): 2613-20, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452272

RESUMO

Germline deletion of the p53 gene in mice gives rise to spontaneous thymic (T-cell) lymphomas. In this study, the p53 knockout mouse was employed as a model to study the mutational evolution of tumorigenesis. The clonality of the T-cell repertoire from p53 knockout and wild-type thymic cells was analyzed at various ages employing TCRß sequencing. These data demonstrate that p53 knockout thymic lymphomas arose in an oligoclonal fashion, with tumors evolving dominant clones over time. Exon sequencing of tumor DNA revealed that all of the independently derived oligoclonal mouse tumors had a deletion in the Pten gene prior to the formation of the TCRß rearrangement, produced early in development. This was followed in each independent clone of the thymic lymphoma by the amplification or overexpression of cyclin Ds and Cdk6. Alterations in the expression of Ikaros were common and blocked further development of CD-4/CD-8 T cells. While the frequency of point mutations in the genome of these lymphomas was one per megabase, there were a tremendous number of copy number variations producing the tumors' driver mutations. The initial inherited loss of p53 functions appeared to delineate an order of genetic alterations selected for during the evolution of these thymic lymphomas.


Assuntos
Evolução Molecular , Linfoma/genética , Neoplasias do Timo/genética , Proteína Supressora de Tumor p53/genética , Animais , Ciclina D/genética , Quinase 6 Dependente de Ciclina/genética , Variações do Número de Cópias de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Mutação Puntual/genética
3.
PLoS Med ; 17(9): e1003292, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970670

RESUMO

BACKGROUND: Identifying stage II patients with colorectal cancer (CRC) at higher risk of progression is a clinical priority in order to optimize the advantages of adjuvant chemotherapy while avoiding unnecessary toxicity. Recently, the intensity and the quality of the host immune response in the tumor microenvironment have been reported to have an important role in tumorigenesis and an inverse association with tumor progression. This association is well established in microsatellite instable CRC. In this work, we aim to assess the usefulness of measures of T-cell infiltration as prognostic biomarkers in 640 stage II, CRC tumors, 582 of them confirmed microsatellite stable. METHODS AND FINDINGS: We measured both the quantity and clonality index of T cells by means of T-cell receptor (TCR) immunosequencing in a discovery dataset (95 patients with colon cancer diagnosed at stage II and microsatellite stable, median age 67, 30% women) and replicated the results in 3 additional series of stage II patients from 2 countries. Series 1 and 2 were recruited in Barcelona, Spain and included 112 fresh frozen (FF, median age 69, 44% women) and 163 formalin-fixed paraffin-embedded (FFPE, median age 67, 39% women) samples, respectively. Series 3 included 270 FFPE samples from patients recruited in Haifa, Northern Israel, as part of a large case-control study of CRC (median age 73, 46% women). Median follow-up time was 81.1 months. Cox regression models were fitted to evaluate the prognostic value of T-cell abundance and Simpson clonality of TCR variants adjusting by sex, age, tumor location, and stage (IIA and IIB). In the discovery dataset, higher TCR abundance was associated with better prognosis (hazard ratio [HR] for ≥Q1 = 0.25, 95% CI 0.10-0.63, P = 0.003). A functional analysis of gene expression on these tumors revealed enrichment in pathways related to immune response. Higher values of clonality index (lower diversity) were not associated with worse disease-free survival, though the HR for ≥Q3 was 2.32 (95% CI 0.90-5.97, P = 0.08). These results were replicated in an independent FF dataset (TCR abundance: HR = 0.30, 95% CI 0.12-0.72, P = 0.007; clonality: HR = 3.32, 95% CI 1.38-7.94, P = 0.007). Also, the association with prognosis was tested in 2 independent FFPE datasets. The same association was observed with TCR abundance (HR = 0.41, 95% CI 0.18-0.93, P = 0.03 and HR = 0.56, 95% CI 0.31-1, P = 0.042, respectively, for each FFPE dataset). However, the clonality index was associated with prognosis only in the FFPE dataset from Israel (HR = 2.45, 95% CI 1.39-4.32, P = 0.002). Finally, a combined analysis combining all microsatellite stable (MSS) samples demonstrated a clear prognosis value both for TCR abundance (HR = 0.39, 95% CI 0.26-0.57, P = 1.3e-06) and the clonality index (HR = 2.13, 95% CI 1.44-3.15, P = 0.0002). These associations were also observed when variables were considered continuous in the models (HR per log2 of TCR abundance = 0.85, 95% CI 0.78-0.93, P = 0.0002; HR per log2 or clonality index = 1.16, 95% CI 1.03-1.31, P = 0.016). LIMITATIONS: This is a retrospective study, and samples had been preserved with different methods. Validation series lack complete information about microsatellite instability (MSI) status and pathology assessment. The Molecular Epidemiology of Colorectal Cancer (MECC) study had information about overall survival instead of progression-free survival. CONCLUSION: Results from this study demonstrate that tumor lymphocytes, assessed by TCR repertoire quantification based on a sequencing method, are an independent prognostic factor in microsatellite stable stage II CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Repetições de Microssatélites/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Estudos de Casos e Controles , Quimioterapia Adjuvante , Neoplasias Colorretais/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Instabilidade de Microssatélites , Repetições de Microssatélites/imunologia , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Espanha , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
BMC Cancer ; 20(1): 612, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605647

RESUMO

BACKGROUND: The clonoSEQ® Assay (Adaptive Biotechnologies Corporation, Seattle, USA) identifies and tracks unique disease-associated immunoglobulin (Ig) sequences by next-generation sequencing of IgH, IgK, and IgL rearrangements and IgH-BCL1/2 translocations in malignant B cells. Here, we describe studies to validate the analytical performance of the assay using patient samples and cell lines. METHODS: Sensitivity and specificity were established by defining the limit of detection (LoD), limit of quantitation (LoQ) and limit of blank (LoB) in genomic DNA (gDNA) from 66 patients with multiple myeloma (MM), acute lymphoblastic leukemia (ALL), or chronic lymphocytic leukemia (CLL), and three cell lines. Healthy donor gDNA was used as a diluent to contrive samples with specific DNA masses and malignant-cell frequencies. Precision was validated using a range of samples contrived from patient gDNA, healthy donor gDNA, and 9 cell lines to generate measurable residual disease (MRD) frequencies spanning clinically relevant thresholds. Linearity was determined using samples contrived from cell line gDNA spiked into healthy gDNA to generate 11 MRD frequencies for each DNA input, then confirmed using clinical samples. Quantitation accuracy was assessed by (1) comparing clonoSEQ and multiparametric flow cytometry (mpFC) measurements of ALL and MM cell lines diluted in healthy mononuclear cells, and (2) analyzing precision study data for bias between clonoSEQ MRD results in diluted gDNA and those expected from mpFC based on original, undiluted samples. Repeatability of nucleotide base calls was assessed via the assay's ability to recover malignant clonotype sequences across several replicates, process features, and MRD levels. RESULTS: LoD and LoQ were estimated at 1.903 cells and 2.390 malignant cells, respectively. LoB was zero in healthy donor gDNA. Precision ranged from 18% CV (coefficient of variation) at higher DNA inputs to 68% CV near the LoD. Variance component analysis showed MRD results were robust, with expected laboratory process variations contributing ≤3% CV. Linearity and accuracy were demonstrated for each disease across orders of magnitude of clonal frequencies. Nucleotide sequence error rates were extremely low. CONCLUSIONS: These studies validate the analytical performance of the clonoSEQ Assay and demonstrate its potential as a highly sensitive diagnostic tool for selected lymphoid malignancies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Leucemia Linfocítica Crônica de Células B/diagnóstico , Mieloma Múltiplo/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Kit de Reagentes para Diagnóstico , Medula Óssea/patologia , Ciclina D1/genética , Rearranjo Gênico , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias lambda de Imunoglobulina/genética , Imunoglobulinas/genética , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Limite de Detecção , Mieloma Múltiplo/sangue , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Translocação Genética
5.
J Immunol ; 201(3): 888-896, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29914888

RESUMO

Human T cells that recognize lipid Ags presented by highly conserved CD1 proteins often express semi-invariant TCRs, but the true diversity of lipid Ag-specific TCRs remains unknown. We use CD1b tetramers and high-throughput immunosequencing to analyze thousands of TCRs from ex vivo-sorted or in vitro-expanded T cells specific for the mycobacterial lipid Ag, glucose monomycolate. Our results reveal a surprisingly diverse repertoire resulting from editing of germline-encoded gene rearrangements analogous to MHC-restricted TCRs. We used a distance-based metric (TCRDist) to show how this diverse TCR repertoire builds upon previously reported conserved motifs by including subject-specific TCRs. In a South African cohort, we show that TCRDist can identify clonal expansion of diverse glucose monomycolate-specific TCRs and accurately distinguish patients with active tuberculosis from control subjects. These data suggest that similar mechanisms govern the selection and expansion of peptide and lipid Ag-specific T cells despite the nonpolymorphic nature of CD1.


Assuntos
Antígenos CD1/imunologia , Lipídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Tuberculose/imunologia , Adolescente , Linhagem Celular Tumoral , Células Cultivadas , Criança , Feminino , Humanos , Células K562 , Masculino , Mycobacterium/imunologia , Linfócitos T
6.
Nature ; 515(7528): 568-71, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25428505

RESUMO

Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types. One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8(+) T cells (termed adaptive immune resistance). Here we show that pre-existing CD8(+) T cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analysed samples from 46 patients with metastatic melanoma obtained before and during anti-PD-1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next-generation sequencing for T-cell antigen receptors (TCRs). In serially sampled tumours, patients responding to treatment showed proliferation of intratumoral CD8(+) T cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8-, PD-1- and PD-L1-expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression after therapeutic PD-1 blockade requires pre-existing CD8(+) T cells that are negatively regulated by PD-1/PD-L1-mediated adaptive immune resistance.


Assuntos
Imunidade Adaptativa/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Melanoma/terapia , Modelos Biológicos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Análise Multivariada , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Resultado do Tratamento
7.
BMC Immunol ; 20(1): 19, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226930

RESUMO

BACKGROUND: The adaptive immune system maintains a diversity of T cells capable of recognizing a broad array of antigens. Each T cell's specificity for antigens is determined by its T cell receptors (TCRs), which together across all T cells form a repertoire of millions of unique receptors in each individual. Although many studies have examined how TCR repertoires change in response to disease or drugs, few have explored the temporal dynamics of the TCR repertoire in healthy individuals. RESULTS: Here we report immunosequencing of TCR ß chains (TCRß) from the blood of three healthy individuals at eight time points over one year. TCRß repertoires of all peripheral-blood T cells and sorted memory T cells clustered clearly by individual, systematically demonstrating that TCRß repertoires are specific to individuals across time. This individuality was absent from TCRßs from naive T cells, suggesting that the differences resulted from an individual's antigen exposure history, not genetic background. Many characteristics of the TCRß repertoire (e.g., diversity, clonality) were stable across time, although we found evidence of T cell expansion dynamics even within healthy individuals. We further identified a subset of "persistent" TCRßs present across all time points. These receptors were rich in clonal and highly public receptors and may play a key role in immune system maintenance. CONCLUSIONS: Our results highlight the importance of longitudinal sampling of the immune system, providing a much-needed baseline for TCRß dynamics in healthy individuals. Such a baseline will improve interpretation of changes in the TCRß repertoire during disease or treatment.


Assuntos
Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Fatores de Tempo , Imunidade Adaptativa , Biodiversidade , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Memória Imunológica , Ativação Linfocitária , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 113(42): 11919-11924, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698113

RESUMO

Immune checkpoint therapies, such as ipilimumab, induce dramatic antitumor responses in a subset of patients with advanced malignancies, but they may also induce inflammatory responses and toxicities termed immune-related adverse events (irAEs). These irAEs are often low grade and manageable, but severe irAEs may lead to prolonged hospitalizations or fatalities. Early intervention is necessary to minimize morbidities that occur with severe irAEs. However, correlative biomarkers are currently lacking. In a phase II clinical trial that treated 27 patients with metastatic prostate cancer, we aimed to test the safety and efficacy of androgen deprivation therapy plus ipilimumab. In this study, we observed grade 3 toxicities in >40% of treated patients, which led to early closure of the study. Because ipilimumab enhances T-cell responses, we hypothesized that increased clonal T-cell responses in the systemic circulation may contribute to irAEs. Sequencing of the T-cell receptor ß-chains in purified T cells revealed clonal expansion of CD8 T cells, which occurred in blood samples collected before the onset of grade 2-3 irAEs. These initial results suggested that expansion of ≥55 CD8 T-cell clones preceded the development of severe irAEs. We further evaluated available blood samples from a second trial and determined that patients who experienced grade 2-3 irAEs also had expansion of ≥55 CD8 T-cell clones in blood samples collected before the onset of irAEs. We propose that CD8 T-cell clonal expansion may be a correlative biomarker to enable close monitoring and early intervention for patients receiving ipilimumab.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Linfócitos T CD8-Positivos/imunologia , Evolução Clonal/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Ipilimumab/efeitos adversos , Contagem de Linfócitos , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Ensaios Clínicos Fase II como Assunto , Suscetibilidade a Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Humanos , Ipilimumab/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/complicações , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
9.
J Allergy Clin Immunol ; 142(2): 647-662, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29128674

RESUMO

BACKGROUND: Candida albicans is a dimorphic fungus to which human subjects are exposed early in life, and by adulthood, it is part of the mycobiome of skin and other tissues. Neonatal skin lacks resident memory T (TRM) cells, but in adults the C albicans skin test is a surrogate for immunocompetence. Young adult mice raised under specific pathogen-free conditions are naive to C albicans and have been shown recently to have an immune system resembling that of neonatal human subjects. OBJECTIVE: We studied the evolution of the adaptive cutaneous immune response to Candida species. METHODS: We examined both human skin T cells and the de novo and memory immune responses in a mouse model of C albicans skin infection. RESULTS: In mice the initial IL-17-producing cells after C albicans infection were dermal γδ T cells, but by day 7, αß TH17 effector T cells were predominant. By day 30, the majority of C albicans-reactive IL-17-producing T cells were CD4 TRM cells. Intravital microscopy showed that CD4 effector T cells were recruited to the site of primary infection and were highly motile 10 days after infection. Between 30 and 90 days after infection, these CD4 T cells became increasingly sessile, acquired expression of CD69 and CD103, and localized to the papillary dermis. These established TRM cells produced IL-17 on challenge, whereas motile migratory memory T cells did not. TRM cells rapidly clear an infectious challenge with C albicans more effectively than recirculating T cells, although both populations participate. We found that in normal human skin IL-17-producing CD4+ TRM cells that responded to C albicans in an MHC class II-restricted fashion could be identified readily. CONCLUSIONS: These studies demonstrate that C albicans infection of skin preferentially generates CD4+ IL-17-producing TRM cells, which mediate durable protective immunity.


Assuntos
Candida albicans/fisiologia , Candidíase/imunologia , Pele/imunologia , Subpopulações de Linfócitos T/fisiologia , Células Th17/fisiologia , Imunidade Adaptativa , Adulto , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunocompetência , Memória Imunológica , Recém-Nascido , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Pele/microbiologia
10.
J Neurooncol ; 137(2): 269-278, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29322427

RESUMO

There is little known regarding the immune infiltrate present in pediatric brain tumors and how this compares to what is known about histologically similar adult tumors and its correlation with survival. Here, we provide a descriptive analysis of the immune infiltrate of 22 fresh pediatric brain tumor tissue samples of mixed diagnoses and 40 peripheral blood samples. Samples were analyzed using a flow cytometry panel containing markers for immune cell subtypes, costimulatory markers, inhibitory signals, and markers of activation. This was compared to the standard method of immunohistochemistry (IHC) for immune markers for 89 primary pediatric brain tumors. Both flow cytometry and IHC data did not correlate with the grade of tumor or mutational load and IHC data was not significantly associated with survival for either low grade or high grade gliomas. There is a trend towards a more immunosuppressive phenotype in higher grade tumors with more regulatory T cells present in these tumor types. Both PD1 and PDL1 were present in only a small percentage of the tumor infiltrate. T cell receptor sequencing revealed up to 10% clonality of T cells in tumor infiltrates and no significant difference in clonality between low and high grade gliomas. We have shown the immune infiltrate of pediatric brain tumors does not appear to correlate with grade or survival for a small sample of patients. Further research and larger studies are needed to fully understand the interaction of pediatric brain tumors and the immune system.


Assuntos
Neoplasias Encefálicas/imunologia , Adolescente , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Humanos , Imunofenotipagem , Lactente , Mutação , Gradação de Tumores , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/patologia
11.
Cancer ; 123(17): 3291-3304, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463396

RESUMO

BACKGROUND: Patients with metastatic sarcomas have poor outcomes and although the disease may be amenable to immunotherapies, information regarding the immunologic profiles of soft tissue sarcoma (STS) subtypes is limited. METHODS: The authors identified patients with the common STS subtypes: leiomyosarcoma, undifferentiated pleomorphic sarcoma (UPS), synovial sarcoma (SS), well-differentiated/dedifferentiated liposarcoma, and myxoid/round cell liposarcoma. Gene expression, immunohistochemistry for programmed cell death protein (PD-1) and programmed death-ligand 1 (PD-L1), and T-cell receptor Vß gene sequencing were performed on formalin-fixed, paraffin-embedded tumors from 81 patients. Differences in liposarcoma subsets also were evaluated. RESULTS: UPS and leiomyosarcoma had high expression levels of genes related to antigen presentation and T-cell infiltration. UPS were found to have higher levels of PD-L1 (P≤.001) and PD-1 (P≤.05) on immunohistochemistry and had the highest T-cell infiltration based on T-cell receptor sequencing, significantly more than SS, which had the lowest (P≤.05). T-cell infiltrates in UPS also were more oligoclonal compared with SS and liposarcoma (P≤.05). A model adjusted for STS histologic subtype found that for all sarcomas, T-cell infiltration and clonality were highly correlated with PD-1 and PD-L1 expression levels (P≤.01). CONCLUSIONS: In the current study, the authors provide the most detailed overview of the immune microenvironment in sarcoma subtypes to date. UPS, which is a more highly mutated STS subtype, provokes a substantial immune response, suggesting that it may be well suited to treatment with immune checkpoint inhibitors. The SS and liposarcoma subsets are less mutated but do express immunogenic self-antigens, and therefore strategies to improve antigen presentation and T-cell infiltration may allow for successful immunotherapy in patients with these diagnoses. Cancer 2017;123:3291-304. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Assuntos
Receptor de Morte Celular Programada 1/genética , Sarcoma/genética , Sarcoma/mortalidade , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/mortalidade , Linfócitos T/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Biópsia por Agulha , Células Clonais , Análise por Conglomerados , Estudos de Coortes , Terapia Combinada , Bases de Dados Factuais , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Sarcoma/patologia , Sarcoma/terapia , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/terapia , Análise de Sobrevida , Linfócitos T/imunologia , Adulto Jovem
12.
J Virol ; 89(8): 4517-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653453

RESUMO

UNLABELLED: A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor ß-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE: The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this previous work by reporting the identity of activated effector T cell clones that expand in response to the YFV 2 weeks postvaccination (as defined by their unique T cell receptor gene sequence) and by tracking clones that enter the memory compartment 3 months postvaccination. This is the first study to use high-throughput sequencing of immune cells to characterize the breadth of the antiviral effector cell response and to determine the contribution of unique virus-induced clones to the long-lived memory T cell repertoire. Thus, this study establishes a benchmark against which future vaccines can be compared to predict their efficacy.


Assuntos
Linhagem da Célula/imunologia , Memória Imunológica/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas Atenuadas/farmacologia , Vacinas Virais/farmacologia , Vírus da Febre Amarela/imunologia , Sequência de Bases , Citometria de Fluxo , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Vacinas Atenuadas/administração & dosagem , Vacinas Virais/administração & dosagem , Washington
13.
J Pathol ; 231(4): 433-440, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027095

RESUMO

The cellular adaptive immune system mounts a response to many solid tumours mediated by tumour-infiltrating T lymphocytes (TILs). Basic measurements of these TILs, including total count, show promise as prognostic markers for a variety of cancers, including ovarian and colorectal. In addition, recent therapeutic advances are thought to exploit this immune response to effectively fight melanoma, with promising studies showing efficacy in additional cancers. However, many of the basic properties of TILs are poorly understood, including specificity, clonality, and spatial heterogeneity of the T-cell response. We utilize deep sequencing of rearranged T-cell receptor beta (TCRB) genes to characterize the basic properties of TILs in ovarian carcinoma. Due to somatic rearrangement during T-cell development, the TCR beta chain sequence serves as a molecular tag for each T-cell clone. Using these sequence tags, we assess similarities and differences between infiltrating T cells in discretely sampled sections of large tumours and compare to T cells from peripheral blood. Within the limits of sensitivity of our assay, the TIL repertoires show strong similarity throughout each tumour and are distinct from the circulating T-cell repertoire. We conclude that the cellular adaptive immune response within ovarian carcinomas is spatially homogeneous and distinct from the T-cell compartment of peripheral blood.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunidade Adaptativa , Análise por Conglomerados , Regiões Determinantes de Complementaridade/genética , Feminino , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Omento , Neoplasias Ovarianas/genética , Neoplasias Peritoneais/imunologia , Neoplasias Peritoneais/secundário , Análise de Sequência de DNA/métodos
15.
Cancer Immunol Immunother ; 62(9): 1453-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23771160

RESUMO

Tumors from colorectal cancer (CRC) are generally immunogenic and commonly infiltrated with T lymphocytes. However, the details of the adaptive immune reaction to these tumors are poorly understood. We have accrued both colon tumor samples and adjacent healthy mucosal samples from 15 CRC patients to study lymphocytes infiltrating these tissues. We apply a method for detailed sequencing of T-cell receptor (TCR) sequences from tumor-infiltrating lymphocytes (TILs) in CRC tumors at high throughput to probe T-cell clones in comparison with the TCRs from adjacent healthy mucosal tissue. In parallel, we captured TIL counts using standard immunohistochemistry. The variation in diversity of the TIL repertoire was far wider than the variation of T-cell clones in the healthy mucosa, and the oligoclonality was higher on average in the tumors. However, the diversity of the T-cell repertoire in both CRC tumors and healthy mucosa was on average 100-fold lower than in peripheral blood. Using the TCR sequences to identify and track clones between mucosal and tumor samples, we determined that the immune response in the tumor is different than in the adjacent mucosal tissue, and the number of shared clones is not dependent on distance between the samples. Together, these data imply that CRC tumors induce a specific adaptive immune response, but that this response differs widely in strength and breadth between patients.


Assuntos
Neoplasias Colorretais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Estudos de Coortes , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Linfócitos do Interstício Tumoral/patologia , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia
16.
J Virol ; 85(22): 12043-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865395

RESUMO

SCAN is a protein domain frequently found at the N termini of proteins encoded by mammalian tandem zinc finger (ZF) genes, whose structure is known to be similar to that of retroviral gag capsid domains and whose multimerization has been proposed as a model for retroviral assembly. We report that the SCAN domain is derived from the C-terminal portion of the gag capsid (CA) protein from the Gmr1-like family of Gypsy/Ty3-like retrotransposons. On the basis of sequence alignments and phylogenetic distributions, we show that the ancestral host SCAN domain (ESCAN for extended SCAN) was exapted from a full-length CA gene from a Gmr1-like retrotransposon at or near the root of the tetrapod animal branch. A truncated variant of ESCAN that corresponds to the annotated SCAN domain arose shortly thereafter and appears to be the only form extant in mammals. The Anolis lizard has a large number of tandem ZF genes with N-terminal ESCAN or SCAN domains. We predict DNA binding sites for all Anolis ESCAN-ZF and SCAN-ZF proteins and demonstrate several highly significant matches to Anolis Gmr1-like sequences, suggesting that at least some of these proteins target retroelements. SCAN is known to mediate protein dimerization, and the CA protein multimerizes to form the core retroviral and retrotransposon capsid structure. We speculate that the SCAN domain originally functioned to target host ZF proteins to retroelement capsids.


Assuntos
Proteínas do Capsídeo/genética , Evolução Molecular , Retroelementos , Fatores de Transcrição/genética , Animais , Mamíferos , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Alinhamento de Sequência
17.
PLoS Genet ; 5(1): e1000325, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19119423

RESUMO

The majority of human genes are conserved among mammals, but some gene families have undergone extensive expansion in particular lineages. Here, we present an evolutionary analysis of one such gene family, the poly-zinc-finger (poly-ZF) genes. The human genome encodes approximately 700 members of the poly-ZF family of putative transcriptional repressors, many of which have associated KRAB, SCAN, or BTB domains. Analysis of the gene family across the tree of life indicates that the gene family arose from a small ancestral group of eukaryotic zinc-finger transcription factors through many repeated gene duplications accompanied by functional divergence. The ancestral gene family has probably expanded independently in several lineages, including mammals and some fishes. Investigation of adaptive evolution among recent paralogs using d(N)/d(S) analysis indicates that a major component of the selective pressure acting on these genes has been positive selection to change their DNA-binding specificity. These results suggest that the poly-ZF genes are a major source of new transcriptional repression activity in humans and other primates.


Assuntos
Evolução Molecular , Fatores de Transcrição/genética , Dedos de Zinco/genética , Animais , Variação Genética , Humanos , Camundongos , Modelos Moleculares , Filogenia , Conformação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Seleção Genética , Fatores de Transcrição/química , Transcrição Gênica
18.
Antib Ther ; 5(2): 130-137, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35769631

RESUMO

Antibody therapies represent a valuable tool to reduce COVID-19 deaths and hospitalizations. Multiple antibody candidates have been granted emergency use authorization by the Food and Drug Administration and many more are in clinical trials. Most antibody therapies for COVID-19 are engineered to bind to the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein and disrupt its interaction with angiotensin-converting enzyme 2 (ACE2). Notably, several SARS-CoV-2 strains have accrued mutations throughout the RBD that improve ACE2 binding affinity, enhance viral transmission and escape some existing antibody therapies. Here, we measure the binding affinity of 33 therapeutic antibodies against a large panel of SARS-CoV-2 variants and related strains of clinical significance using AlphaSeq, a high-throughput yeast mating-based assay to determine epitopic residues, determine which mutations result in loss of binding and predict how future RBD variants may impact antibody efficacy.

19.
Sci Data ; 9(1): 653, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289234

RESUMO

The dataset presented here contains quantitative binding scores of scFv-format antibodies against a SARS-CoV-2 target peptide collected via an AlphaSeq assay that can be used in the development and benchmarking of machine learning models. Starting from three seed sequences identified from a phage display campaign using a human naïve library, four sets of 29,900 antibodies were designed in silico by creating all k = 1 mutations and random k = 2 and k = 3 mutations throughout the complementary-determining regions (CDRs). Of the 119,600 designs, 104,972 were successfully built in to the AlphaSeq library and target binding was subsequently measured with 71,384 designs resulting in a predicted affinity value for at least one of the triplicate measurements. Data include antibodies with predicted affinity measurements ranging from 37 pM to 22 mM. To our knowledge, this dataset is the largest, publicly available dataset that contains antibody sequences, antigen sequence and quantitative measurements of binding scores and provides an opportunity to serve as a benchmark to evaluate antibody-specific representation models for machine learning.


Assuntos
COVID-19 , Anticorpos de Cadeia Única , Humanos , Biblioteca de Peptídeos , SARS-CoV-2 , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Anticorpos Antivirais
20.
J Clin Pathol ; 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522177

RESUMO

AIMS: Characterise T-cell receptor gene (TR) repertoires of small intestinal T cells of patients with newly diagnosed (active) coeliac disease (ACD), refractory CD type I (RCD I) and patients with CD on a gluten-free diet (GFD). METHODS: Next-generation sequencing of complementarity-determining region 3 (CDR3) of rearranged T cell receptor ß (TRB) and γ (TRG) genes was performed using DNA extracted from intraepithelial cell (IEC) and lamina propria cell (LPC) fractions and a small subset of peripheral blood mononuclear cell (PBMC) samples obtained from CD and non-CD (control) patients. Several parameters were assessed, including relative abundance and enrichment. RESULTS: TRB and TRG repertoires of CD IEC and LPC samples demonstrated lower clonality but higher frequency of rearranged TRs compared with controls. No CD-related differences were detected in the limited number of PBMC samples. Previously published LP gliadin-specific TRB sequences were more frequently detected in LPC samples from patients with CD compared with non-CD controls. TRG repertoires of IECs from both ACD and GFD patients demonstrated increased abundance of certain CDR3 amino acid (AA) motifs compared with controls, which were encoded by multiple nucleotide variants, including one motif that was enriched in duodenal IECs versus the PBMCs of CD patients. CONCLUSIONS: Small intestinal TRB and TRG repertoires of patients with CD are more diverse than individuals without CD, likely due to mucosal recruitment and accumulation of T cells because of protracted inflammation. Enrichment of the unique TRG CDR3 AA sequence in the mucosa of patients with CD may suggest disease-associated changes in the TCRγδ IE lymphocyte (IEL) landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA