Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2027): 20240953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39013421

RESUMO

The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.


Assuntos
Cor , Gastrópodes , Comportamento Predatório , Animais , Gastrópodes/fisiologia , Pigmentação , Mimetismo Biológico
2.
Proc Biol Sci ; 290(2003): 20231160, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491958

RESUMO

Aposematic signals visually advertise underlying anti-predatory defences in many species. They should be detectable (e.g. contrasting against the background) and bold (e.g. using internal pattern contrast) to enhance predator recognition, learning and memorization. However, the signalling function of aposematic colour patterns may be distance-dependent: signals may be undetectable from a distance to reduce increased attacks from naïve predators but bold when viewed up close. Using quantitative colour pattern analysis, we quantified the chromatic and achromatic detectability and boldness of colour patterns in 13 nudibranch species with variable strength of chemical defences in terms of unpalatability and toxicity, approximating the visual perception of a triggerfish (Rhinecanthus aculeatus) across a predation sequence (detection to subjugation). When viewed from an ecologically relevant distance of 30 cm, there were no differences in detectability and boldness between well-defended and undefended species. However, when viewed at closer distances (less than 30 cm), well-defended species were more detectable and bolder than undefended species. As distance increased, detectability decreased more significantly than boldness for defended species. For undefended species, boldness and detectability remained comparatively consistent, regardless of viewing distance. We provide evidence for distance-dependent signalling in aposematic nudibranchs and highlight the importance of distinguishing signal detectability from boldness in studies of aposematism.


Assuntos
Evolução Biológica , Gastrópodes , Animais , Percepção Visual , Aprendizagem , Comportamento Predatório
3.
Proc Biol Sci ; 290(2001): 20230463, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357856

RESUMO

Diurnal biting flies are strongly attracted to blue objects. This behaviour is widely exploited for fly control, but its functional significance is debated. It is hypothesized that blue objects resemble animal hosts; blue surfaces resemble shaded resting places; and blue attraction is a by-product of attraction to polarized light. We computed the fly photoreceptor signals elicited by a large sample of leaf and animal integument reflectance spectra, viewed under open/cloudy illumination and under woodland shade. We then trained artificial neural networks (ANNs) to distinguish animals from leaf backgrounds, and shaded from unshaded surfaces, in order to find the optimal means of doing so based upon the sensory information available to a fly. After training, we challenged ANNs to classify blue objects used in fly control. Trained ANNs could make both discriminations with high accuracy. They discriminated animals from leaves based upon blue-green photoreceptor opponency and commonly misclassified blue objects as animals. Meanwhile, they discriminated shaded from unshaded stimuli using achromatic cues and never misclassified blue objects as shaded. We conclude that blue-green opponency is the most effective means of discriminating animals from leaf backgrounds using a fly's sensory information, and that blue objects resemble animal hosts through such mechanisms.


Assuntos
Mordeduras e Picadas de Insetos , Moscas Tsé-Tsé , Animais , Cor , Controle de Insetos , Estimulação Luminosa , Comportamento Animal
4.
Proc Biol Sci ; 290(2000): 20222492, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37282538

RESUMO

Coloration facilitates evolutionary investigations in nature because the interaction between genotype, phenotype and environment is relatively accessible. In a landmark set of studies, Endler addressed this complexity by demonstrating that the evolution of male Trinidadian guppy coloration is shaped by the local balance between selection for mate attractiveness versus crypsis. This became a textbook paradigm for how antagonistic selective pressures may determine evolutionary trajectories in nature. However, recent studies have challenged the generality of this paradigm. Here, we respond to these challenges by reviewing five important yet underappreciated factors that contribute to colour pattern evolution: (i) among-population variation in female preference and correlated variation in male coloration, (ii) differences in how predators versus conspecifics view males, (iii) biased assessment of pigmentary versus structural coloration, (iv) the importance of accounting for multi-species predator communities, and (v) the importance of considering the multivariate genetic architecture and multivariate context of selection and how sexual selection encourages polymorphic divergence. We elaborate these issues using two challenging papers. Our purpose is not to criticize but to point out the potential pitfalls in colour research and to emphasize the depth of consideration necessary for testing evolutionary hypotheses using complex multi-trait phenotypes such as guppy colour patterns.


Assuntos
Poecilia , Masculino , Feminino , Animais , Poecilia/genética , Cor , Fenótipo , Seleção Sexual , Genótipo , Pigmentação/genética , Evolução Biológica
5.
Proc Biol Sci ; 290(1991): 20222068, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651049

RESUMO

In a variety of aposematic species, the conspicuousness of an individual's warning signal and the quantity of its chemical defence are positively correlated. This apparent honest signalling is predicted by resource competition models which assume that the production and maintenance of aposematic defences compete for access to antioxidant molecules that have dual functions as pigments and in protecting against oxidative damage. To test for such trade-offs, we raised monarch butterflies (Danaus plexippus) on different species of their milkweed host plants (Apocynaceae) that vary in quantities of cardenolides to test whether (i) the sequestration of cardenolides as a secondary defence is associated with costs in the form of oxidative lipid damage and reduced antioxidant defences; and (ii) lower oxidative state is associated with a reduced capacity to produce aposematic displays. In male monarchs conspicuousness was explained by an interaction between oxidative damage and sequestration: males with high levels of oxidative damage became less conspicuous with increased sequestration of cardenolides, whereas those with low oxidative damage became more conspicuous with increased levels of cardenolides. There was no significant effect of oxidative damage or concentration of sequestered cardenolides on female conspicuousness. Our results demonstrate a physiological linkage between the production of coloration and oxidative state, and differential costs of sequestration and signalling in monarch butterflies.


Assuntos
Asclepias , Borboletas , Toxinas Biológicas , Animais , Masculino , Borboletas/fisiologia , Larva/fisiologia , Antioxidantes , Asclepias/química , Cardenolídeos , Estresse Oxidativo
6.
J Exp Biol ; 225(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354306

RESUMO

Edge detection is important for object detection and recognition. However, we do not know whether edge statistics accurately predict the detection of prey by potential predators. This is crucial given the growing availability of image analysis software and their application across non-human visual systems. Here, we investigated whether Boundary Strength Analysis (BSA), Local Edge Intensity Analysis (LEIA) and the Gabor edge disruption ratio (GabRat) could predict the speed and success with which triggerfish (Rhinecanthus aculeatus) detected patterned circular stimuli against a noisy visual background, in both chromatic and achromatic presentations. We found various statistically significant correlations between edge statistics and detection speed depending on treatment and viewing distance; however, individual pattern statistics only explained up to 2% of the variation in detection time, and up to 6% when considering edge statistics simultaneously. We also found changes in fish response over time. While highlighting the importance of spatial acuity and relevant viewing distances in the study of visual signals, our results demonstrate the importance of considering explained variation when interpreting colour pattern statistics in behavioural experiments. We emphasize the need for statistical approaches suitable for investigating task-specific predictive relationships and ecological effects when considering animal behaviour. This is particularly important given the ever-increasing dimensionality and size of datasets in the field of visual ecology.

7.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258087

RESUMO

Animals use colour vision in a range of behaviours. Visual performance is limited by thresholds, which are set by noise in photoreceptors and subsequent neural processing. The receptor noise limited (RNL) model of colour discrimination is widely used for modelling colour vision and accounts well for experimental data from many species. In one of the most comprehensive tests yet of colour discrimination in a non-human species, we used Ishihara-style stimulus patterns to examine thresholds for 21 directions at five locations in colour space for the fish Rhinecanthus aculeatus. Thresholds matched RNL model predictions most closely for stimuli near the achromatic point, but exceeded predictions (indicating a decline in sensitivity) with distance from this point. Thresholds were also usually higher for saturation than for hue differences. These changes in colour threshold with colour space location and direction may give insight into photoreceptor non-linearities and post-receptoral mechanisms of colour vision in fish. Our results highlight the need for a cautious interpretation of the RNL model - especially for modelling colours that differ from one another in saturation (rather than hue), and for highly saturated colours distant from the achromatic point in colour space.


Assuntos
Visão de Cores , Tetraodontiformes , Animais , Cor , Percepção de Cores , Limiar Sensorial
8.
J Exp Biol ; 224(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34694382

RESUMO

Ontogenetic colour change occurs in a diversity of vertebrate taxa and may be closely linked to dietary changes throughout development. In various species, red, orange and yellow colouration can be enhanced by the consumption of carotenoids. However, a paucity of long-term dietary manipulation studies means that little is known of the role of individual carotenoid compounds in ontogenetic colour change. We know even less about the influence of individual compounds at different doses (dose effects). The present study aimed to use a large dietary manipulation experiment to investigate the effect of dietary ß-carotene supplementation on colouration in southern corroboree frogs (Pseudophryne corroboree) during early post-metamorphic development. Frogs were reared on four dietary treatments with four ß-carotene concentrations (0, 1, 2 and 3 mg g-1), with frog colour measured every 8 weeks for 32 weeks. ß-Carotene was not found to influence colouration at any dose. However, colouration was found to become more conspicuous over time, including in the control treatment. Moreover, all frogs expressed colour maximally at a similar point in development. These results imply that, for our study species, (1) ß-carotene may contribute little or nothing to colouration, (2) frogs can manufacture their own colour, (3) colour development is a continual process and (4) there may have been selection for synchronised development of colour expression. We discuss the potential adaptive benefit of ontogenetic colour change in P. corroboree. More broadly, we draw attention to the potential for adaptive developmental synchrony in the expression of colouration in aposematic species.


Assuntos
Anuros , beta Caroteno , Animais , Carotenoides , Cor , Dieta
9.
J Exp Biol ; 224(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33758023

RESUMO

Producing colored signals often requires consuming dietary carotenoid pigments. Evidence that food deprivation can reduce coloration, however, raises the question of whether other dietary nutrients contribute to signal coloration, and furthermore, whether individuals can voluntarily select food combinations to achieve optimal coloration. We created a two-way factorial design to manipulate macronutrient and carotenoid access in common mynas (Acridotheres tristis) and measured eye patch coloration as a function of the food combinations individuals selected. Mynas had access to either water or carotenoid-supplemented water and could either eat a standard captive diet or choose freely between three nutritionally defined pellets (protein, lipid or carbohydrate). Mynas supplemented with both carotenoids and macronutrient pellets had higher color scores than control birds. Male coloration tended to respond more to nutritional manipulation than females, with color scores improving in macronutrient- and carotenoid-supplemented individuals compared with controls. All mynas consuming carotenoids had higher levels of plasma carotenoids, but only males showed a significant increase by the end of the experiment. Dietary carotenoids and macronutrient intake consumed in combination tended to increase plasma carotenoid concentrations the most. These results demonstrate for the first time that consuming specific combinations of macronutrients along with carotenoids contributes to optimizing a colorful signal, and point to sex-specific nutritional strategies. Our findings improve our knowledge of how diet choices affect signal expression and, by extension, how nutritionally impoverished diets, such as those consumed by birds in cities, might affect sexual selection processes and, ultimately, population dynamics.


Assuntos
Plumas , Pigmentação , Animais , Carotenoides , Dieta , Ingestão de Alimentos , Feminino , Humanos , Masculino
10.
Proc Biol Sci ; 287(1935): 20201456, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32933449

RESUMO

To be effective, animal colour signals must attract attention-and therefore need to be conspicuous. To understand the signal function, it is useful to evaluate their conspicuousness to relevant viewers under various environmental conditions, including when visual scenes are cluttered by objects of varying colour. A widely used metric of colour difference (ΔS) is based on the receptor noise limited (RNL) model, which was originally proposed to determine when two similar colours appear different from one another, termed the discrimination threshold (or just noticeable difference). Estimates of the perceptual distances between colours that exceed this threshold-termed 'suprathreshold' colour differences-often assume that a colour's conspicuousness scales linearly with colour distance, and that this scale is independent of the direction in colour space. Currently, there is little behavioural evidence to support these assumptions. This study evaluated the relationship between ΔS and conspicuousness in suprathreshold colours using an Ishihara-style test with a coral reef fish, Rhinecanthus aculeatus. As our measure of conspicuousness, we tested whether fish, when presented with two colourful targets, preferred to peck at the one with a greater ΔS - from the average distractor colour. We found the relationship between ΔS and conspicuousness followed-- a sigmoidal function, with high ΔS colours perceived as equally conspicuous. We found that the relationship between ΔS and conspicuousness varied across colour space (i.e. for different hues). The sigmoidal detectability curve was little affected by colour variation in the background or when colour distance was calculated using a model that does not incorporate receptor noise. These results suggest that the RNL model may provide accurate estimates for perceptual distance for small suprathreshold distance colours, even in complex viewing environments, but must be used with caution with perceptual distances exceeding- -10 ΔS.


Assuntos
Escamas de Animais/fisiologia , Peixes/fisiologia , Animais , Percepção de Cores , Recifes de Corais , Pigmentação , Tetraodontiformes/fisiologia
11.
Proc Natl Acad Sci U S A ; 114(29): 7713-7718, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673984

RESUMO

How can a pollinator, like the honey bee, perceive the same colors on visited flowers, despite continuous and rapid changes in ambient illumination and background color? A hundred years ago, von Kries proposed an elegant solution to this problem, color constancy, which is currently incorporated in many imaging and technological applications. However, empirical evidence on how this method can operate on animal brains remains tenuous. Our mathematical modeling proposes that the observed spectral tuning of simple ocellar photoreceptors in the honey bee allows for the necessary input for an optimal color constancy solution to most natural light environments. The model is fully supported by our detailed description of a neural pathway allowing for the integration of signals originating from the ocellar photoreceptors to the information processing regions in the bee brain. These findings reveal a neural implementation to the classic color constancy problem that can be easily translated into artificial color imaging systems.


Assuntos
Abelhas/fisiologia , Percepção de Cores/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Encéfalo/fisiologia , Cor , Corantes Fluorescentes/química , Imageamento Tridimensional , Iluminação , Modelos Estatísticos , Modelos Teóricos , Neurônios/fisiologia , Estimulação Luminosa , Visão Ocular
12.
J Exp Biol ; 222(Pt 1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606793

RESUMO

Colour vision mediates ecologically relevant tasks for many animals, such as mate choice, foraging and predator avoidance. However, our understanding of animal colour perception is largely derived from human psychophysics, and behavioural tests of non-human animals are required to understand how colour signals are perceived. Here, we introduce a novel test of colour vision in animals inspired by the Ishihara colour charts, which are widely used to identify human colour deficiencies. In our method, distractor dots have a fixed chromaticity (hue and saturation) but vary in luminance. Animals can be trained to find single target dots that differ from distractor dots in chromaticity. We provide MATLAB code for creating these stimuli, which can be modified for use with different animals. We demonstrate the success of this method with triggerfish, Rhinecanthus aculeatus, which quickly learnt to select target dots that differed from distractor dots, and highlight behavioural parameters that can be measured, including success of finding the target dot, time to detection and error rate. We calculated discrimination thresholds by testing whether target colours that were of increasing colour distances (ΔS) from distractor dots could be detected, and calculated discrimination thresholds in different directions of colour space. At least for some colours, thresholds indicated better discrimination than expected from the receptor noise limited (RNL) model assuming 5% Weber fraction for the long-wavelength cone. This methodology could be used with other animals to address questions such as luminance thresholds, sensory bias, effects of sensory noise, colour categorization and saliency.


Assuntos
Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Limiar Sensorial/fisiologia , Tetraodontiformes/fisiologia , Animais , Modelos Biológicos , Células Fotorreceptoras Retinianas Cones
13.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875302

RESUMO

Mimicry of warning signals is common, and can be mutualistic when mimetic species harbour equal levels of defence (Müllerian), or parasitic when mimics are undefended but still gain protection from their resemblance to the model (Batesian). However, whether chemically defended mimics should be similar in terms of toxicity (i.e. causing damage to the consumer) and/or unpalatability (i.e. distasteful to consumer) is unclear and in many studies remains undifferentiated. In this study, we investigated the evolution of visual signals and chemical defences in a putative mimicry ring of nudibranch molluscs. First, we demonstrated that the appearance of a group of red spotted nudibranchs molluscs was similar from the perspective of potential fish predators using visual modelling and pattern analysis. Second, using phylogenetic reconstruction, we demonstrated that this colour pattern has evolved multiple times in distantly related individuals. Third, we showed that these nudibranchs contained different chemical profiles used for defensive purposes. Finally, we demonstrated that although levels of distastefulness towards Palaemon shrimp remained relatively constant between species, toxicity levels towards brine shrimp varied significantly. We highlight the need to disentangle toxicity and taste when considering chemical defences in aposematic and mimetic species, and discuss the implications for aposematic and mimicry signal evolution.


Assuntos
Evolução Biológica , Mimetismo Biológico , Cadeia Alimentar , Gastrópodes/fisiologia , Palaemonidae/fisiologia , Tetraodontiformes/fisiologia , Animais , Austrália , Cor , Filogenia , Paladar
14.
J Evol Biol ; 31(8): 1227-1238, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29808616

RESUMO

Sensory drive proposes that natural selection on nonmating behaviours (e.g. foraging preferences) alters sensory system properties and results in a correlated effect on mating preferences and subsequently sexual traits. In colour-based systems, we can test this by selecting on nonmating colour preferences and testing for responses in colour-based female preferences and male sexual coloration. In guppies (Poecilia reticulata), individual functional links of sensory drive have been demonstrated providing an opportunity to test the process over more than one link. We measured male coloration and female preferences in populations previously artificially selected for colour-based foraging behaviour towards two colours, red and blue. We found associated changes in male coloration in the expected direction as well as weak changes in female preferences. Our results can be explained by a correlated response in female preferences due to artificial selection on foraging preferences that are mediated by a shared sensory system or by other mechanisms such as colour avoidance, pleiotropy or social experiences. This is the first experimental evidence that selection on a nonmating behaviour can affect male coloration and, more weakly, female preferences.


Assuntos
Ração Animal , Evolução Biológica , Pigmentação , Poecilia/fisiologia , Animais , Comportamento Alimentar , Masculino , Poecilia/genética , Seleção Genética , Comportamento Sexual Animal
15.
J Evol Biol ; 31(10): 1459-1476, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29947081

RESUMO

The sensory drive hypothesis predicts that across different light environments sexually selected colour patterns will change to increase an animal's visual communication efficiency within different habitats. This is because individuals with more efficient signal components are likely to have more successful matings and hence produce more offspring. However, how colour pattern signals change over multiple generations under different light environmental conditions has not been tested experimentally. Here, we manipulated colour pattern signal efficiency by providing different ambient light environments over multiple generations to examine whether male colour pattern components change within large replicated populations of guppies (Poecilia reticulata). We report that colour patches change within populations over time and are phenotypically different among our three different light environments. Visual modelling suggests that the majority of these changes can be understood by considering the chroma, hue and luminance of each colour patch as seen by female guppies under each light environment. Taken together, our results support the hypothesis that different environmental conditions during signal reception can directly or indirectly drive the phenotypic diversification of visual signals within species.


Assuntos
Preferência de Acasalamento Animal , Pigmentação/fisiologia , Poecilia/fisiologia , Animais , Evolução Biológica , Ecossistema , Feminino , Luz , Masculino , Modelos Biológicos , Fenótipo
16.
J Exp Biol ; 220(Pt 6): 1048-1055, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298465

RESUMO

Animals may improve camouflage by both dynamic colour change and local evolutionary adaptation of colour but we have little understanding of their relative importance in colour-changing species. We tested for differences in colour change in response to background colour and light intensity in two populations of central bearded dragon lizards (Pogona vitticeps) representing the extremes in body coloration and geographical range. We found that bearded dragons change colour in response to various backgrounds and that colour change is affected by illumination intensity. Within-individual colour change was similar in magnitude in the two populations but varied between backgrounds. However, at the endpoints of colour change, each population showed greater similarity to backgrounds that were representative of the local habitat compared with the other population, indicating local adaptation to visual backgrounds. Our results suggest that even in species that change colour, both phenotypic plasticity and geographic divergence of coloration may contribute to improved camouflage.


Assuntos
Mimetismo Biológico , Lagartos/fisiologia , Animais , Evolução Biológica , Cor , Ecossistema , Luz , Masculino
17.
Biol Lett ; 13(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28404819

RESUMO

Deimatic or 'startle' displays cause a receiver to recoil reflexively in response to a sudden change in sensory input. Deimatism is sometimes implicitly treated as a form of aposematism (unprofitability associated with a signal). However, the fundamental difference is, in order to provide protection, deimatism does not require a predator to have any learned or innate aversion. Instead, deimatism can confer a survival advantage by exploiting existing neural mechanisms in a way that releases a reflexive response in the predator. We discuss the differences among deimatism, aposematism, and forms of mimicry, and their ecological and evolutionary implications. We highlight outstanding questions critical to progress in understanding deimatism.


Assuntos
Comportamento Animal , Evolução Biológica , Reação de Fuga , Animais , Reflexo/fisiologia
18.
Am Nat ; 188(6): 668-678, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27860512

RESUMO

Animal coloration has multiple functions including thermoregulation, camouflage, and social signaling, and the requirements of each function may sometimes conflict. Many terrestrial ectotherms accommodate the multiple functions of color through color change. However, the relative importance of these functions and how color-changing species accommodate them when they do conflict are poorly understood because we lack data on color change in the wild. Here, we show that the color of individual radio-tracked bearded dragon lizards, Pogona vitticeps, correlates strongly with background color and less strongly, but significantly, with temperature. We found no evidence that individuals simultaneously optimize camouflage and thermoregulation by choosing light backgrounds when hot or dark backgrounds when cold. In laboratory experiments, lizards showed both UV-visible (300-700 nm) and near-infrared (700-2,100 nm) reflectance changes in response to different background and temperature treatments, consistent with camouflage and thermoregulatory functions, respectively, but with no interaction between the two. Overall, our results suggest that wild bearded dragons change color to improve both thermoregulation and camouflage but predominantly adjust for camouflage, suggesting that compromising camouflage may entail a greater potential immediate survival cost.


Assuntos
Mimetismo Biológico , Regulação da Temperatura Corporal , Lagartos/fisiologia , Pigmentação , Animais , Cor , Masculino
19.
Proc Biol Sci ; 283(1839)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683362

RESUMO

The appearance of animal colour signals depends jointly upon the ambient light spectrum and the signal's reflectance spectra. Light environment heterogeneity might, therefore, allow individuals to enhance their signal by signalling in an environment that increases signal efficacy. We tested this hypothesis by providing male guppies (Poecilia reticulata), a choice of three light environments in which to display their colour signal to females: green, lilac, and clear. We paired males with both receptive and non-receptive females to test whether female response might affect male behavioural decisions. Males preferred the clear environment in all trials and this environment also resulted in males having the highest average visual contrast. Sexual behaviour was influenced by complex interactions between female receptivity, light environment, and male colour pattern contrast. Males spent significantly more time in the environment in which their colour signal had the highest contrast, but only when paired with receptive females. Significant interactions between light environment and individual male colour components were also seen only in receptive trials. Our results suggest that males use light environment to enhance their colour pattern, but only in the presence of receptive females.

20.
Am Nat ; 185(4): 452-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25811082

RESUMO

Multicomponent signals are made up of interacting elements that generate a functional signaling unit. The interactions between signal components and their effects on individual fitness are not well understood, and the effect of environment is even less so. It is usually assumed that color patterns appear the same in all light environments and that the effects of each color are additive. Using guppies, Poecilia reticulata, we investigated the effect of water color on the interactions between components of sexually selected male coloration. Through behavioral mate choice trials in four different water colors, we estimated the attractiveness of male color patterns, using multivariate fitness estimates and overall signal contrast. Our results show that females exhibit preferences that favor groups of colors rather than individual colors independently and that each environment favors different color combinations. We found that these effects are consistent with female guppies selecting entire color patterns on the basis of overall visual contrast. This suggests that both individuals and populations inhabiting different light environments will be subject to divergent, multivariate selection. Although the appearance of color patterns changes with light environment, achromatic components change little, suggesting that these could function in species recognition or other aspects of communication that must work across environments. Consequently, we predict different phylogenetic patterns between chromatic and achromatic signals within the same clades.


Assuntos
Preferência de Acasalamento Animal , Pigmentação/genética , Poecilia/fisiologia , Animais , Comportamento de Escolha , Cor , Meio Ambiente , Feminino , Luz , Masculino , Fenótipo , Filogenia , Poecilia/genética , Percepção Visual , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA