Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cogn Emot ; 31(4): 772-780, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26963703

RESUMO

Surprised expressions are interpreted as negative by some people, and as positive by others. When compared to fearful expressions, which are consistently rated as negative, surprise and fear share similar morphological structures (e.g. widened eyes), but these similarities are primarily in the upper part of the face (eyes). We hypothesised, then, that individuals would be more likely to interpret surprise positively when fixating faster to the lower part of the face (mouth). Participants rated surprised and fearful faces as either positive or negative while eye movements were recorded. Positive ratings of surprise were associated with longer fixation on the mouth than negative ratings. There were also individual differences in fixation patterns, with individuals who fixated the mouth earlier exhibiting increased positive ratings. These findings suggest that there are meaningful individual differences in how people process faces.


Assuntos
Emoções/fisiologia , Fixação Ocular/fisiologia , Individualidade , Viés , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
2.
Appl Plant Sci ; 8(8): e11385, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999772

RESUMO

PREMISE: Maize yields have significantly increased over the past half-century owing to advances in breeding and agronomic practices. Plants have been grown in increasingly higher densities due to changes in plant architecture resulting in plants with more upright leaves, which allows more efficient light interception for photosynthesis. Natural variation for leaf angle has been identified in maize and sorghum using multiple mapping populations. However, conventional phenotyping techniques for leaf angle are low throughput and labor intensive, and therefore hinder a mechanistic understanding of how the leaf angle of individual leaves changes over time in response to the environment. METHODS: High-throughput time series image data from water-deprived maize (Zea mays subsp. mays) and sorghum (Sorghum bicolor) were obtained using battery-powered time-lapse cameras. A MATLAB-based image processing framework, Leaf Angle eXtractor (LAX), was developed to extract and quantify leaf angles from images of maize and sorghum plants under drought conditions. RESULTS: Leaf angle measurements showed differences in leaf responses to drought in maize and sorghum. Tracking leaf angle changes at intervals as short as one minute enabled distinguishing leaves that showed signs of wilting under water deprivation from other leaves on the same plant that did not show wilting during the same time period. DISCUSSION: Automating leaf angle measurements using LAX makes it feasible to perform large-scale experiments to evaluate, understand, and exploit the spatial and temporal variations in plant response to water limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA