Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Physiol Renal Physiol ; 326(4): F644-F660, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420674

RESUMO

Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.


Assuntos
Hipertensão , Nefropatias , Podócitos , Humanos , Camundongos , Animais , Idoso , Podócitos/metabolismo , Camundongos Obesos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Fenótipo , Nefropatias/metabolismo , Obesidade/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Desoxicorticosterona , Acetatos/metabolismo , RNA Mensageiro/metabolismo
2.
Am J Physiol Renal Physiol ; 326(1): F120-F134, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855038

RESUMO

As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Pessoa de Meia-Idade , Humanos , Camundongos , Animais , Idoso , Podócitos/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Nefropatias/metabolismo , Envelhecimento , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo
3.
Kidney Int ; 98(5): 1160-1173, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32592814

RESUMO

Glomerular podocytes undergo structural and functional changes with advanced age, that increase susceptibility of aging kidneys to worse outcomes following superimposed glomerular diseases. To delineate transcriptional changes in podocytes in aged mice, RNA-seq was performed on isolated populations of reporter-labeled (tdTomato) podocytes from multiple young (two to three months) and advanced aged mice (22 to 24 months, equivalent to 70 plus year old humans). Of the 2,494 differentially expressed genes, 1,219 were higher and 1,275 were lower in aged podocytes. Pathway enrichment showed that major biological processes increased in aged podocytes included immune responses, non-coding RNA metabolism, gene silencing and MAP kinase signaling. Conversely, aged podocytes showed downregulation of developmental, morphogenesis and metabolic processes. Canonical podocyte marker gene expression decreased in aged podocytes, with increases in apoptotic and senescence genes providing a mechanism for the progressive loss of podocytes seen with aging. In addition, we revealed aberrations in the podocyte autocrine signaling network, identified the top transcription factors perturbed in aged podocytes, and uncovered candidate gene modulations that might promote healthy aging in podocytes. The transcriptional signature of aging is distinct from other kidney diseases. Thus, our study provides insights into biomarker discovery and molecular targeting of the aging process itself within podocytes.


Assuntos
Podócitos , Envelhecimento/genética , Animais , Glomérulos Renais , Camundongos , Transdução de Sinais , Transcriptoma
4.
Am J Physiol Renal Physiol ; 317(6): F1680-F1694, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630546

RESUMO

In healthy glomeruli, parietal epithelial cell (PEC)-derived extracellular matrix (ECM) proteins include laminin-ß1, perlecan, and collagen type IV-α2 and podocyte-specific ECM proteins include laminin-ß2, agrin, and collagen type IV-α4. This study aimed to define individual ECM protein isoform expression by PECs in both experimental and human focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy (DN) and to determine if changes were CD44 dependent. In experimental FSGS induced with a cytotoxic podocyte antibody and in the BTBR ob/ob mouse model of DN, PEC-derived protein staining was significantly increased in PECs. Dual staining also showed de novo expression of the podocyte-specific ECM proteins laminin-ß2 and agrin in PECs. Similar findings were observed in biopsies from patients with FSGS and DN. Increases in individual ECM proteins colocalized with CD44 in PECs in disease. To determine the role of CD44, FSGS was induced in CD44-/- and CD44+/+ mice. PEC staining for perlecan, collagen type IV-α2, laminin-ß2, and agrin were significantly lower in diseased CD44-/- mice compared with diseased CD44+/+ mice. These results show that in experimental and human FSGS and DN, PECs typically in an activated state, produce both PEC-derived and podocyte-specific ECM protein isoforms, and that the majority of these changes were dependent on CD44.


Assuntos
Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Podócitos/metabolismo , Agrina/metabolismo , Animais , Colágeno Tipo IV/metabolismo , Nefropatias Diabéticas/patologia , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Rim/metabolismo , Rim/patologia , Laminina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos
5.
Kidney Int ; 96(3): 597-611, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31200942

RESUMO

Podocytes are differentiated post-mitotic cells that cannot replace themselves after injury. Glomerular parietal epithelial cells are proposed to be podocyte progenitors. To test whether a subset of parietal epithelial cells transdifferentiate to a podocyte fate, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice, named PEC-PODO, were generated. Doxycycline administration permanently labeled parietal epithelial cells with tdTomato reporter (red), and upon doxycycline removal, the parietal epithelial cells (PECs) cannot label further. Despite the presence or absence of doxycycline, podocytes cannot label with tdTomato, but are constitutively labeled with an enhanced green fluorescent protein (EGFP) reporter (green). Only activation of the Nphs1-FLPo transgene by labeled parietal epithelial cells can generate a yellow color. At day 28 of experimental focal segmental glomerulosclerosis, podocyte density was 20% lower in 20% of glomeruli. At day 56 of experimental focal segmental glomerulosclerosis, podocyte density was 18% lower in 17% of glomeruli. TdTomato+ parietal epithelial cells were restricted to Bowman's capsule in healthy mice. However, by days 28 and 56 of experimental disease, two-thirds of tdTomato+ parietal epithelial cells within glomerular tufts were yellow in color. These cells co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of endothelial (ERG) or mesangial (Perlecan) cells. Expansion microscopy showed primary, secondary and minor processes in tdTomato+EGFP+ cells in glomerular tufts. Thus, our studies provide strong evidence that parietal epithelial cells serve as a source of new podocytes in adult mice.


Assuntos
Transdiferenciação Celular , Células Epiteliais/fisiologia , Glomerulosclerose Segmentar e Focal/patologia , Podócitos/fisiologia , Animais , Modelos Animais de Doenças , Genes Reporter/genética , Glomerulosclerose Segmentar e Focal/terapia , Humanos , Microscopia Intravital , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteína Vermelha Fluorescente
6.
Am J Physiol Renal Physiol ; 315(5): F1449-F1464, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30019931

RESUMO

Under certain circumstances, podocytes can be partially replaced following their loss in disease. The inability of podocytes to proliferate suggests that replacement derives from other cell types. Because neural/glial antigen 2 (NG2)-expressing cells can serve as progenitors in other organs and because herein we showed increased NG2 staining in podocytes following their loss in experimental focal segmental glomerulosclerosis, we used lineage tracing in NG2-CreER tdTomato mice to test the hypothesis that partial podocyte replacement might derive from this cell population. The percentage of glomeruli with red fluorescence protein (RFP)-labeled NG2 cells increased following podocyte depletion, which was augmented by enalapril. However, BrdU was not detected in RFP-labeled cells, consistent with the migration of these cells to the glomerulus. Within glomeruli, RFP-labeled cells did not coexpress podocyte proteins (p57, synaptopodin, nephrin, or podocin) but did coexpress markers for mesangial (α8 integrin, PDGFß receptor) and parietal epithelial cells (PAX8, src-suppressed C-kinase substrate). These results suggest that following podocyte depletion, cells of NG2 lineage do not serve as adult podocyte progenitors but have the ability to transdifferentiate to mesangial and parietal epithelial cell fates.


Assuntos
Antígenos/metabolismo , Linhagem da Célula , Proliferação de Células , Transdiferenciação Celular , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Podócitos/patologia , Proteoglicanas/metabolismo , Regeneração , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Antígenos/genética , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Cadeias alfa de Integrinas/metabolismo , Glomérulos Renais/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX8/metabolismo , Fenótipo , Podócitos/metabolismo , Proteoglicanas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
7.
Am J Physiol Renal Physiol ; 315(1): F97-F109, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412700

RESUMO

Blocking the renin-angiotensin-aldosterone system (RAAS) remains a mainstay of therapy in hypertension and glomerular diseases. With the population aging, our understanding of renin-producing cells in kidneys with advanced age is more critical than ever. Accordingly, we administered tamoxifen to Ren1cCreERxRs-tdTomato-R mice to permanently fate map cells of renin lineage (CoRL). The number of Td-tomato-labeled CoRL decreased significantly in aged mice (24 mo of age) compared with young mice (3.5 mo of age), as did renin mRNA levels. To determine whether aged CoRL responded less to RAAS blockade, enalapril and losartan were administered over 25 days following uninephrectomy in young and aged mice. The number of CoRL increased in young mice in response to enalapril and losartan. However, this was significantly lower in aged mice compared with young mice due to limited proliferation, but not recruitment. Gene expression analysis of laser-captured CoRL showed a substantial increase in mRNA levels for proapoptotic and prosenescence genes, and an increase in a major prosenescence protein on immunostaining. These results show that CoRL are lower in aged mice and do not respond to RAAS inhibition to the same extent as young mice.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Linhagem da Célula , Enalapril/farmacologia , Rim/efeitos dos fármacos , Losartan/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Renina/metabolismo , Fatores Etários , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Feminino , Genes Reporter , Rim/metabolismo , Rim/patologia , Rim/cirurgia , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos Transgênicos , Nefrectomia , Proteína Vermelha Fluorescente
8.
Kidney Int ; 93(5): 1240-1246, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580637

RESUMO

Understanding of cellular transdifferentiation is limited by the technical inability to track multiple lineages in vivo. To overcome this we developed a new tool to simultaneously fate map two distinct cell types in the kidney, and genetically test whether cells of renin lineage (CoRL) can transdifferentiate to a podocyte fate. Ren1cCreER/tdTomato/Nphs1-FLPo/FRT-EGFP mice (CoRL-PODO mice) were generated by crossing Ren1c-CreER/tdTomato CoRL reporter mice with Nphs1-FLPo/FRT-EGFP podocyte reporter mice. Following tamoxifen administration in these animals, CoRL were labeled with red fluorescence (tdTomato) and co-localized with renin. Podocytes were labeled green (enhanced green fluorescent protein) and co-localized with nephrin. Following podocyte loss by nephrotoxic antibody and subsequent enalapril-enhanced partial replacement, tdTomato-EGFP-labeled CoRL were detected as yellow-colored cells in a subset of glomerular tufts, without the use of antibodies. Co-localization with podocin indicated that these cells are podocytes, derived from CoRL origin. Thus, our novel study shows that two distinct cell types can be simultaneously labeled in the mouse kidney and provide strong genetic evidence in vivo that lost podocytes can be replaced in part by CoRL.


Assuntos
Linhagem da Célula , Rastreamento de Células/métodos , Transdiferenciação Celular , Glomerulosclerose Segmentar e Focal/metabolismo , Podócitos/metabolismo , Renina/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Genes Reporter , Glomerulosclerose Segmentar e Focal/patologia , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Camundongos Transgênicos , Microscopia de Fluorescência , Fenótipo , Podócitos/patologia , Renina/genética , Células-Tronco/patologia
9.
Kidney Int ; 91(4): 896-913, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27998643

RESUMO

The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wild-type mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain), and collagen IV staining were lower in CD44 knockout compared with wild-type mice with FSGS. Parietal epithelial cells had lower migration from Bowman's capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cell migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44-overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression, and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cell phenotype.


Assuntos
Matriz Extracelular/enzimologia , Glomerulosclerose Segmentar e Focal/enzimologia , Receptores de Hialuronatos/metabolismo , Glomérulos Renais/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Podócitos/enzimologia , Albuminúria/enzimologia , Albuminúria/genética , Albuminúria/prevenção & controle , Animais , Movimento Celular , Células Cultivadas , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Receptores de Hialuronatos/genética , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fenótipo , Fosforilação , Podócitos/efeitos dos fármacos , Podócitos/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Transfecção
10.
Kidney Int ; 91(5): 1126-1145, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28063595

RESUMO

Although age-associated changes in kidney glomerular architecture have been described in mice and man, the mechanisms are unknown. It is unclear if these changes can be prevented or even reversed by systemic therapies administered at advanced age. Using light microscopy and transmission electron microscopy, our results showed glomerulosclerosis with injury to mitochondria in glomerular epithelial cells in mice aged 26 months (equivalent to a 79-year-old human). To test the hypothesis that reducing mitochondrial damage in late age would result in lowered glomerulosclerosis, we administered the mitochondrial targeted peptide, SS-31, to aged mice. Baseline (24-month-old) mice were randomized to receive 8 weeks of SS-31, or saline, and killed at 26 months of age. SS-31 treatment improved age-related mitochondrial morphology and glomerulosclerosis. Assessment of glomeruli revealed that SS-31 reduced senescence (p16, senescence-associated-ß-Gal) and increased the density of parietal epithelial cells. However, SS-31 treatment reduced markers of parietal epithelial cell activation (Collagen IV, pERK1/2, and α-smooth muscle actin). SS-31 did not impact podocyte density, but it reduced markers of podocyte injury (desmin) and improved cytoskeletal integrity (synaptopodin). This was accompanied by higher glomerular endothelial cell density (CD31). Thus, despite initiating therapy in late-age mice, a short course of SS-31 has protective benefits on glomerular mitochondria, accompanied by temporal changes to the glomerular architecture. This systemic pharmacological intervention in old-aged animals limits glomerulosclerosis and senescence, reduces parietal epithelial cell activation, and improves podocyte and endothelial cell integrity.


Assuntos
Envelhecimento/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Mitocôndrias/efeitos dos fármacos , Oligopeptídeos/farmacologia , Actinas/metabolismo , Envelhecimento/fisiologia , Animais , Colágeno Tipo IV/metabolismo , Desmina/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Glomérulos Renais/citologia , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Podócitos/efeitos dos fármacos , Esclerose
11.
J Am Soc Nephrol ; 27(12): 3611-3627, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27080979

RESUMO

Because adult podocytes cannot proliferate and are therefore unable to self-renew, replacement of these cells depends on stem/progenitor cells. Although podocyte number is higher after renin-angiotensin-aldosterone system (RAAS) inhibition in glomerular diseases, the events explaining this increase are unclear. Cells of renin lineage (CoRL) have marked plasticity, including the ability to acquire a podocyte phenotype. To test the hypothesis that RAAS inhibition partially replenishes adult podocytes by increasing CoRL number, migration, and/or transdifferentiation, we administered tamoxifen to Ren1cCreERxRs-tdTomato-R CoRL reporter mice to induce permanent labeling of CoRL with red fluorescent protein variant tdTomato. We then induced experimental FSGS, typified by abrupt podocyte depletion, with a cytopathic antipodocyte antibody. RAAS inhibition by enalapril (angiotensin-converting enzyme inhibitor) or losartan (angiotensin-receptor blocker) in FSGS mice stimulated the proliferation of CoRL, increasing the reservoir of these cells in the juxtaglomerular compartment (JGC). Compared with water or hydralazine, RAAS inhibition significantly increased the migration of CoRL from the JGC to the intraglomerular compartment (IGC), with more glomeruli containing RFP+CoRL and, within these glomeruli, more RFP+CoRL. Moreover, RAAS inhibition in FSGS mice increased RFP+CoRL transdifferentiation in the IGC to phenotypes, consistent with those of podocytes (coexpression of synaptopodin and Wilms tumor protein), parietal epithelial cells (PAX 8), and mesangial cells (α8 integrin). These results show that in the context of podocyte depletion in FSGS, RAAS inhibition augments CoRL proliferation and plasticity toward three different glomerular cell lineages.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Linhagem da Célula , Enalapril/farmacologia , Losartan/farmacologia , Podócitos/citologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Renina/fisiologia , Animais , Linhagem da Célula/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Masculino , Camundongos , Podócitos/efeitos dos fármacos
12.
Am J Physiol Renal Physiol ; 311(3): F626-39, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440779

RESUMO

Parietal epithelial cell (PEC) response to glomerular injury may underlie a common pathway driving fibrogenesis following podocyte loss that typifies several glomerular disorders. Although the mammalian target of rapamycin (mTOR) pathway is important in cell homeostasis, little is known of the biological role or impact of reducing mTOR activity on PEC response following podocyte depletion, nor in the aging kidney. The purpose of these studies was to determine the impact on PECs of reducing mTOR activity following abrupt experimental depletion in podocyte number, as well as in a model of chronic podocyte loss and sclerosis associated with aging. Podocyte depletion was induced by an anti-podocyte antibody and rapamycin started at day 5 until death at day 14 Reducing mTOR did not lead to a greater reduction in podocyte density, despite greater glomerulosclerosis. However, mTOR inhibition lead to an increase in PEC density and PEC-derived crescent formation. Additionally, markers of epithelial-to-mesenchymal transition (platelet-derived growth factor receptor-ß, α-smooth muscle actin, Notch-3) and PEC activation (CD44, collagen IV) were further increased by mTOR reduction. Aged mice treated with rapamycin for 1, 2, and 10 wk before death at 26.5 mo (≈75-yr-old human age) had increased the number of glomeruli with a crescentic appearance. mTOR inhibition at either a high or low level lead to changes in PEC phenotype, indicating PEC morphology is sensitive to changes mediated by global mTOR inhibition.


Assuntos
Envelhecimento/metabolismo , Células Epiteliais/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Rim/metabolismo , Podócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento/patologia , Animais , Contagem de Células , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Glomerulosclerose Segmentar e Focal/patologia , Rim/efeitos dos fármacos , Rim/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos , Podócitos/efeitos dos fármacos , Podócitos/patologia , Sirolimo/farmacologia
13.
Am J Physiol Renal Physiol ; 310(11): F1397-413, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27076646

RESUMO

The current studies used genetic fate mapping to prove that adult podocytes can be partially replenished following depletion. Inducible NPHS2-rtTA/tetO-Cre/RS-ZsGreen-R reporter mice were generated to permanently label podocytes with the ZsGreen reporter. Experimental focal segmental glomerulosclerosis (FSGS) was induced with a cytotoxic podocyte antibody. On FSGS day 7, immunostaining for the podocyte markers p57, synaptopodin, and podocin were markedly decreased by 44%, and this was accompanied by a decrease in ZsGreen fluorescence. The nuclear stain DAPI was absent in segments of reduced ZsGreen and podocyte marker staining, which is consistent with podocyte depletion. Staining for p57, synaptopodin, podocin, and DAPI increased at FSGS day 28 and was augmented by the ACE inhibitor enalapril, which is consistent with a partial replenishment of podocytes. In contrast, ZsGreen fluorescence did not return and remained significantly low at day 28, indicating replenishment was from a nonpodocyte origin. Despite administration of bromodeoxyuridine (BrdU) thrice weekly throughout the course of disease, BrdU staining was not detected in podocytes, which is consistent with an absence of proliferation. Although ZsGreen reporting was reduced in the tuft at FSGS day 28, labeled podocytes were detected along the Bowman's capsule in a subset of glomeruli, which is consistent with migration from the tuft. Moreover, more than half of the migrated podocytes coexpressed the parietal epithelial cell (PEC) proteins claudin-1, SSeCKS, and PAX8. These results show that although podocytes can be partially replenished following abrupt depletion, a process augmented by ACE inhibition, the source or sources are nonpodocyte in origin and are independent of proliferation. Furthermore, a subset of podocytes migrate to the Bowman's capsule and begin to coexpress PEC markers.


Assuntos
Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Animais , Cápsula Glomerular/metabolismo , Cápsula Glomerular/patologia , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/patologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Podócitos/patologia
14.
Am J Physiol Renal Physiol ; 309(4): F341-58, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26062877

RESUMO

Modified vascular smooth muscle cells of the kidney afferent arterioles have recently been shown to serve as progenitors for glomerular epithelial cells in response to glomerular injury. To determine whether such cells of renin lineage (CoRL) serve as progenitors for other cells in kidney disease characterized by both glomerular and tubulointerstitial injury, permanent genetic cell fate mapping of adult CoRL using Ren1cCreER × Rs-tdTomato-R reporter mice was performed. TdTomato-labeled CoRL were almost completely restricted to the juxtaglomerular compartment in healthy kidneys. Following 2 wk of antibody-mediated focal segmental glomerulosclerosis (FSGS) or 16 wk of ⅚ nephrectomy-induced chronic kidney diseases, tdTomato-mapped CoRL were identified in both interstitial and glomerular compartments. In the interstitium, PDGFß receptor (R)-expressing cells significantly increased, and a portion of these expressed tdTomato. This was accompanied by a decrease in native pericyte number, but an increase in the number of tdTomato cells that coexpressed the pericyte markers PDGFß-R and NG2. These cells surrounded vessels and coexpressed the pericyte markers CD73 and CD146, but not the endothelial marker ERG. Within glomeruli of reporter mice with the ⅚ nephrectomy model, a subset of labeled CoRL migrated to the glomerular tuft and coexpressed podocin and synaptopodin. By contrast, labeled CoRL were not detected in glomerular or interstitial compartments following uninephrectomy. These observations indicate that in addition to supplying new adult podocytes to glomeruli, CoRL have the capacity to become new adult pericytes in the setting of interstitial disease. We conclude that CoRL have the potential to function as progenitors for multiple adult cell types in kidney disease.


Assuntos
Células-Tronco Adultas/metabolismo , Linhagem da Célula , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Nefrite Intersticial/metabolismo , Células-Tronco Pluripotentes/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Renina/metabolismo , Células-Tronco Adultas/ultraestrutura , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Movimento Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes Reporter , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/ultraestrutura , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nefrite Intersticial/genética , Nefrite Intersticial/patologia , Pericitos/metabolismo , Pericitos/ultraestrutura , Fenótipo , Células-Tronco Pluripotentes/ultraestrutura , Podócitos/ultraestrutura , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Renina/genética
15.
Am J Physiol Renal Physiol ; 309(2): F164-78, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26017974

RESUMO

Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and ß-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-ß, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age.


Assuntos
Envelhecimento/patologia , Células Epiteliais/patologia , Glomérulos Renais/patologia , Envelhecimento/metabolismo , Animais , Biomarcadores/metabolismo , Cápsula Glomerular/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Receptores de Hialuronatos/metabolismo , Glomérulos Renais/metabolismo , Camundongos Endogâmicos C57BL , Pericitos/metabolismo , Fosforilação , Podócitos , Receptor Notch3 , Receptores Notch/metabolismo
16.
Kidney Int ; 88(5): 999-1012, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25993321

RESUMO

As adult podocytes cannot adequately proliferate following depletion in disease states, there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine whether parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PEC-rtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, whereas in disease (cytotoxic sheep anti-podocyte antibody) labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14, and 28. Early in disease, the majority of PECs in the tuft coexpressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs coexpressed podocyte proteins but not CD44. Neither labeled PECs on the tuft nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype, which is likely reparative.


Assuntos
Células Epiteliais/fisiologia , Glomerulosclerose Segmentar e Focal/patologia , Podócitos/fisiologia , Regeneração , Albuminúria/etiologia , Animais , Cápsula Glomerular/patologia , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/análise , Modelos Animais de Doenças , Células Epiteliais/química , Glomerulosclerose Segmentar e Focal/complicações , Glomerulosclerose Segmentar e Focal/metabolismo , Receptores de Hialuronatos/análise , Peptídeos e Proteínas de Sinalização Intracelular/análise , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/análise , Camundongos , Proteínas dos Microfilamentos/análise , Podócitos/química , Podócitos/patologia , Células-Tronco/fisiologia , beta-Galactosidase/metabolismo
17.
Aging (Albany NY) ; 15(14): 6658-6689, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37487005

RESUMO

The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1ß IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.


Assuntos
Podócitos , Humanos , Animais , Camundongos , Pessoa de Meia-Idade , Podócitos/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Glomérulos Renais/metabolismo , Envelhecimento
18.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35968783

RESUMO

With an aging population, kidney health becomes an important medical and socioeconomic factor. Kidney aging mechanisms are not well understood. We previously showed that podocytes isolated from aged mice exhibit increased expression of programmed cell death protein 1 (PD-1) surface receptor and its 2 ligands (PD-L1 and PD-L2). PDCD1 transcript increased with age in microdissected human glomeruli, which correlated with lower estimated glomerular filtration rate and higher segmental glomerulosclerosis and vascular arterial intima-to-lumen ratio. In vitro studies in podocytes demonstrated a critical role for PD-1 signaling in cell survival and in the induction of a senescence-associated secretory phenotype. To prove PD-1 signaling was critical to podocyte aging, aged mice were injected with anti-PD-1 antibody. Treatment significantly improved the aging phenotype in both kidney and liver. In the glomerulus, it increased the life span of podocytes, but not that of parietal epithelial, mesangial, or endothelial cells. Transcriptomic and immunohistochemistry studies demonstrated that anti-PD-1 antibody treatment improved the health span of podocytes. Administering the same anti-PD-1 antibody to young mice with experimental focal segmental glomerulosclerosis (FSGS) lowered proteinuria and improved podocyte number. These results suggest a critical contribution of increased PD-1 signaling toward both kidney and liver aging and in FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Idoso , Animais , Células Endoteliais/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Glomérulos Renais/metabolismo , Camundongos , Podócitos/metabolismo , Transdução de Sinais
19.
Physiol Rep ; 8(12): e14487, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32597007

RESUMO

CD44 contributes to the activation of glomerular parietal epithelial cells (PECs). Although CD44 expression is higher in PECs of healthy aged mice, the biological role of CD44 in PECs in this context remains unclear. Accordingly, young (4 months) and aged (24 months) CD44-/- mice were compared to age-matched CD44+/+ mice, both aged in a nonstressed environment. Parietal epithelial cell densities were similar in both young and aged CD44+/+ and CD44-/- mice. Phosphorylated ERK 1/2 (pERK) was higher in aged CD44+/+ mice. Vimentin and α-SMA, markers of changes to the epithelial cell phenotype, were present in PECs in aged CD44+/+ mice, but absent in aged CD44-/- mice in both outer cortical (OC) and juxtamedullary (JM) glomeruli. Because age-related glomerular hypertrophy was lower in CD44-/- mice, mTOR activation was assessed by phospho-S6 ribosomal protein (pS6RP) staining. Parietal epithelial cells and glomerular tuft staining for pS6RP was lower in aged CD44-/- mice compared to aged CD44+/+ mice. Podocyte density was higher in aged CD44-/- mice in both OC and JM glomeruli. These changes were accompanied by segmental and global glomerulosclerosis in aged CD44+/+ mice, but absent in aged CD44-/- mice. These results show that the increase in CD44 in PECs in aged kidneys contributes to several changes to the glomerulus during healthy aging in mice, and may involve ERK and mTOR activation.


Assuntos
Receptores de Hialuronatos/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/metabolismo , Podócitos/patologia , Serina-Treonina Quinases TOR/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Receptores de Hialuronatos/genética , Nefropatias/genética , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Podócitos/metabolismo
20.
Aging (Albany NY) ; 12(17): 17601-17624, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32858527

RESUMO

Healthy aging is typified by a progressive and absolute loss of podocytes over the lifespan of animals and humans. To test the hypothesis that a subset of glomerular parietal epithelial cell (PEC) progenitors transition to a podocyte fate with aging, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice were generated. PECs were inducibly labeled with a tdTomato reporter, and podocytes were constitutively labeled with an EGFP reporter. With advancing age (14 and 24 months) glomeruli in the juxta-medullary cortex (JMC) were more severely injured than those in the outer cortex (OC). In aged mice (24m), injured glomeruli with lower podocyte number (41% decrease), showed more PEC migration and differentiation to a podocyte fate than mildly injured or healthy glomeruli. PECs differentiated to a podocyte fate had ultrastructural features of podocytes and co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of mesangial (Perlecan) or endothelial (ERG) cells. PECs differentiated to a podocyte fate did not express CD44, a marker of PEC activation. Taken together, we demonstrate that a subpopulation of PECs differentiate to a podocyte fate predominantly in injured glomeruli in mice of advanced age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA