Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nucl Med Technol ; 39(1): 27-34, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21321248

RESUMO

UNLABELLED: Masked volumewise principal component (PC) analysis (PCA) is used in PET to distinguish structures that display different kinetic behaviors after administration of a tracer. When masked volumewise PCA was introduced, one article proposed noise prenormalization because of temporal and spatial variations of the noise between slices. However, the noise prenormalization proposed in that article was applicable only to datasets reconstructed using filtered backprojection (FBP). The study presented in this article aimed at developing a new noise prenormalization that is applicable to datasets regardless of whether they were reconstructed with FBP or an iterative reconstruction algorithm, such as ordered-subset expectation maximization (OSEM). METHODS: A phantom study was performed to investigate differences in the expectation values and SDs of datasets reconstructed with FBP and OSEM. A novel method, higher-order PC noise prenormalization, was suggested and evaluated against other prenormalization methods on clinical datasets. RESULTS: Masked volumewise PCA of data reconstructed with FBP was much more dependent on an appropriate prenormalization than was analysis of data reconstructed with OSEM. Higher-order PC noise prenormalization showed an overall good performance with both FBP and OSEM reconstructions, whereas the other prenormalization methods performed well with only 1 of the 2 methods. CONCLUSION: Higher-order PC noise prenormalization has potential for improving the results from masked volumewise PCA on dynamic PET datasets independent of the type of reconstruction algorithm.


Assuntos
Aumento da Imagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Análise de Componente Principal , Humanos , Imagens de Fantasmas
2.
J Nucl Med Technol ; 38(2): 53-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20484179

RESUMO

UNLABELLED: The standardized uptake value is commonly used as a tool to supplement visual interpretation and to quantify the images acquired from static in vivo animal PET. The preferred approach for analyzing PET data is either to sum the images and calculate the standardized uptake value or to use kinetic modeling. The aim of this study was to investigate the performance of masked volumewise principal-component analysis (MVW-PCA) used in dynamic in vivo animal PET studies to extract and separate signals with different kinetic behaviors. METHODS: PET data were acquired with a small-animal PET scanner and a fluorine tracer in a study of rats and mice. After acquisition, the data were reconstructed by use of 4 time protocols with different frame lengths. Data were analyzed by use of MVW-PCA with applied noise prenormalization and a new masking technique developed in this study. RESULTS: The resulting principal-component images showed a clear separation of the activity in the spine into the first MVW-PCA component and the activity in the kidneys into the second MVW-PCA component. In addition, the different time protocols were shown to have little or no impact on the results obtained with MVW-PCA. CONCLUSION: MVW-PCA can efficiently separate different kinetic behaviors into different principal-component images. Moreover, MVW-PCA is a stable technique in the sense that the time protocol chosen has only a small impact on the resulting principal-component images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Análise de Componente Principal , Animais , Flúor , Camundongos , Traçadores Radioativos , Ratos , Fatores de Tempo
3.
Open Neuroimag J ; 3: 1-16, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19572032

RESUMO

Multivariate image analysis tools are used for analyzing dynamic or multidimensional Positron Emission Tomography, PET data with the aim of noise reduction, dimension reduction and signal separation. Principal Component Analysis is one of the most commonly used multivariate image analysis tools, applied on dynamic PET data. Independent Component Analysis is another multivariate image analysis tool used to extract and separate signals. Because of the presence of high and variable noise levels and correlation in the different PET images which may confound the multivariate analysis, it is essential to explore and investigate different types of pre-normalization (transformation) methods that need to be applied, prior to application of these tools. In this study, we explored the performance of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) to extract signals and reduce noise, thereby increasing the Signal to Noise Ratio (SNR) in a dynamic sequence of PET images, where the features of the noise are different compared with some other medical imaging techniques. Applications on computer simulated PET images were explored and compared. Application of PCA generated relatively similar results, with some minor differences, on the images with different noise characteristics. However, clear differences were seen with respect to the type of pre-normalization. ICA on images normalized using two types of normalization methods also seemed to perform relatively well but did not reach the improvement in SNR as PCA. Furthermore ICA seems to have a tendency under some conditions to shift over information from IC1 to other independent components and to be more sensitive to the level of noise. PCA is a more stable technique than ICA and creates better results both qualitatively and quantitatively in the simulated PET images. PCA can extract the signals from the noise rather well and is not sensitive to type of noise, magnitude and correlation, when the input data are correctly handled by a proper pre-normalization. It is important to note that PCA as inherently a method to separate signal information into different components could still generate PC1 images with improved SNR as compared to mean images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA