Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8011): 370-375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600390

RESUMO

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Assuntos
Automóveis , Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores , Clima Tropical , Ásia , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Árvores/crescimento & desenvolvimento , Conjuntos de Dados como Assunto , Agricultura Florestal/métodos , Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências
4.
Data Brief ; 46: 108852, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36624759

RESUMO

Ongoing land clearing is a key driver of biodiversity loss and climate change. Effective action to halt land clearing and land degradation ultimately relies on understanding patterns of land capability for production uses, in particular agriculture, as a key driver of land use. Here we describe a national agricultural land capability map for Australia, based on harmonized state agricultural land capability datasets and modelled pastoral capability. State-level agricultural land capability datasets capture regional variations in crop selection and suitability. Hence, we reclassified these datasets to fit a nationally consistent land capability ranking scheme. For regions in which agricultural capability data was not available, we modelled agricultural and pastoral capability and mapped this to the same ranking scheme. The national land capability dataset fills an immediate knowledge need for Australia. This dataset has wide potential for utilization, such as for retrospective analysis of land use policies and prospective regional planning initiatives to ensure forward looking policies and land use plans optimize land allocation.

5.
Curr Biol ; 33(13): R706-R707, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433268

RESUMO

William Laurance and colleagues alert to the dangers of limiting the freedom of conservation science in Indonesia and elsewhwere.


Assuntos
Conservação dos Recursos Naturais , Indonésia
6.
Conserv Physiol ; 11(1): coad064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732160

RESUMO

Climate change is expected to increase the intensity and occurrence of drought in tropical regions, potentially affecting the phenology and physiology of tree species. Phenological activity may respond to a drying and warming environment by advancing reproductive timing and/or diminishing the production of flowers and fruits. These changes have the potential to disrupt important ecological processes, with potentially wide-ranging effects on tropical forest function. Here, we analysed the monthly flowering and fruiting phenology of a tree community (337 individuals from 30 species) over 7 years in a lowland tropical rainforest in northeastern Australia and its response to a throughfall exclusion drought experiment (TFE) that was carried out from 2016 to 2018 (3 years), excluding approximately 30% of rainfall. We further examined the ecophysiological effects of the TFE on the elemental (C:N) and stable isotope (δ13C and δ15N) composition of leaves, and on the stable isotope composition (δ13C and δ18O) of stem wood of four tree species. At the community level, there was no detectable effect of the TFE on flowering activity overall, but there was a significant effect recorded on fruiting and varying responses from the selected species. The reproductive phenology and physiology of the four species examined in detail were largely resistant to impacts of the TFE treatment. One canopy species in the TFE significantly increased in fruiting and flowering activity, whereas one understory species decreased significantly in both. There was a significant interaction between the TFE treatment and season on leaf C:N for two species. Stable isotope responses were also variable among species, indicating species-specific responses to the TFE. Thus, we did not observe consistent patterns in physiological and phenological changes in the tree community within the 3 years of TFE treatment examined in this study.

7.
PLoS One ; 15(3): e0229614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32126070

RESUMO

The forests of Borneo-the third largest island on the planet-sustain some of the highest biodiversity and carbon storage in the world. The forests also provide vital ecosystem services and livelihood support for millions of people in the region, including many indigenous communities. The Pan-Borneo Highway and several hydroelectric dams are planned or already under construction in Sarawak, a Malaysian state comprising part of the Borneo. This development seeks to enhance economic growth and regional connectivity, support community access to services, and promote industrial development. However, the implications of the development of highway and dams for forest integrity, biodiversity and ecosystem services remained largely unreported. We assessed these development projects using fine-scale biophysical and environmental data and found several environmental and socioeconomic risks associated with the projects. The highway and hydroelectric dam projects will impact 32 protected areas including numerous key habitats of threatened species such as the proboscis monkey (Nasalis larvatus), Sarawak surili (Presbytis chrysomelas), Bornean orangutans (Pongo pygmaeus) and tufted ground squirrel (Rheithrosciurus macrotis). Under its slated development trajectory, the local and trans-national forest connectivity between Malaysian Borneo and Indonesian Borneo would also be substantially diminished. Nearly ~161 km of the Pan-Borneo Highway in Sarawak will traverse forested landscapes and ~55 km will traverse carbon-rich peatlands. The 13 hydroelectric dam projects will collectively impact ~1.7 million ha of forest in Sarawak. The consequences of planned highway and hydroelectric dams construction will increase the carbon footprint of development in the region. Moreover, many new road segments and hydroelectric dams would be built on steep slopes in high-rainfall zones and forested areas, increasing both construction and ongoing maintenance costs. The projects would also alter livelihood activities of downstream communities, risking their long-term sustainability. Overall, our findings identify major economic, social and environmental risks for several planned road segments in Sarawak-such as those between Telok Melano and Kuching; Sibu and Bintulu; and in the Lambir, Limbang and Lawas regions-and dam projects-such as Tutoh, Limbang, Lawas, Baram, Linau, Ulu Air and Baleh dams. Such projects need to be reviewed to ensure they reflect Borneo's unique environmental and forest ecosystem values, the aspirations of local communities and long-term sustainability of the projects rather than being assessed solely on their short-term economic returns.


Assuntos
Conservação dos Recursos Naturais/tendências , Florestas , Desenvolvimento Sustentável/tendências , Animais , Biodiversidade , Bornéu , Sequestro de Carbono , Mudança Climática , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/legislação & jurisprudência , Desenvolvimento Econômico , Ecossistema , Espécies em Perigo de Extinção , Humanos , Indonésia , Malásia , Centrais Elétricas/tendências , Política Pública , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/legislação & jurisprudência
8.
PLoS One ; 14(9): e0221947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31532810

RESUMO

The Heart of Borneo initiative has promoted the integration of protected areas and sustainably-managed forests across Malaysia, Indonesia, and Brunei. Recently, however, member states of the Heart of Borneo have begun pursuing ambitious unilateral infrastructure-development schemes to accelerate economic growth, jeopardizing the underlying goal of trans-boundary integrated conservation. Focusing on Sabah, Malaysia, we highlight conflicts between its Pan-Borneo Highway scheme and the regional integration of protected areas, unprotected intact forests, and conservation-priority forests. Road developments in southern Sabah in particular would drastically reduce protected-area integration across the northern Heart of Borneo region. Such developments would separate two major clusters of protected areas that account for one-quarter of all protected areas within the Heart of Borneo complex. Sabah has proposed forest corridors and highway underpasses as means of retaining ecological connectivity in this context. Connectivity modelling identified numerous overlooked areas for connectivity rehabilitation among intact forest patches following planned road development. While such 'linear-conservation planning' might theoretically retain up to 85% of intact-forest connectivity and integrate half of the conservation-priority forests across Sabah, in reality it is very unlikely to achieve meaningful ecological integration. Moreover, such measure would be exceedingly costly if properly implemented-apparently beyond the operating budget of relevant Malaysian authorities. Unless critical road segments are cancelled, planned infrastructure will fragment important conservation landscapes with little recourse for mitigation. This likelihood reinforces earlier calls for the legal recognition of the Heart of Borneo region for conservation planning as well as for enhanced tri-lateral coordination of both conservation and development.


Assuntos
Conservação dos Recursos Naturais/métodos , Bornéu , Brunei , Desenvolvimento Econômico , Ecossistema , Florestas , Indonésia , Malásia
9.
PLoS One ; 14(7): e0219408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339902

RESUMO

The island of New Guinea hosts the third largest expanse of tropical rainforest on the planet. Papua New Guinea-comprising the eastern half of the island-plans to nearly double its national road network (from 8,700 to 15,000 km) over the next three years, to spur economic growth. We assessed these plans using fine-scale biophysical and environmental data. We identified numerous environmental and socioeconomic risks associated with these projects, including the dissection of 54 critical biodiversity habitats and diminished forest connectivity across large expanses of the island. Key habitats of globally endangered species including Goodfellow's tree-kangaroo (Dendrolagus goodfellowi), Matchie's tree kangaroo (D. matschiei), and several birds of paradise would also be bisected by roads and opened up to logging, hunting, and habitat conversion. Many planned roads would traverse rainforests and carbon-rich peatlands, contradicting Papua New Guinea's international commitments to promote low-carbon development and forest conservation for climate-change mitigation. Planned roads would also create new deforestation hotspots via rapid expansion of logging, mining, and oil-palm plantations. Our study suggests that several planned road segments in steep and high-rainfall terrain would be extremely expensive in terms of construction and maintenance costs. This would create unanticipated economic challenges and public debt. The net environmental, social, and economic risks of several planned projects-such as the Epo-Kikori link, Madang-Baiyer link, Wau-Malalaua link, and some other planned projects in the Western and East Sepik Provinces-could easily outstrip their overall benefits. Such projects should be reconsidered under broader environmental, economic, and social grounds, rather than short-term economic considerations.


Assuntos
Desenvolvimento Sustentável , Biodiversidade , Conservação dos Recursos Naturais , Florestas , Geografia , Papua Nova Guiné , Chuva , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA