Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Inherit Metab Dis ; 40(1): 121-130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696117

RESUMO

Mitochondrial diseases collectively represent one of the most heterogeneous group of metabolic disorders. Symptoms can manifest at any age, presenting with isolated or multiple-organ involvement. Advances in next-generation sequencing strategies have greatly enhanced the diagnosis of patients with mitochondrial disease, particularly where a mitochondrial aetiology is strongly suspected yet OXPHOS activities in biopsied tissue samples appear normal. We used whole exome sequencing (WES) to identify the molecular basis of an early-onset mitochondrial syndrome-pathogenic biallelic variants in the HTRA2 gene, encoding a mitochondria-localised serine protease-in five subjects from two unrelated families characterised by seizures, neutropenia, hypotonia and cardio-respiratory problems. A unifying feature in all affected children was 3-methylglutaconic aciduria (3-MGA-uria), a common biochemical marker observed in some patients with mitochondrial dysfunction. Although functional studies of HTRA2 subjects' fibroblasts and skeletal muscle homogenates showed severely decreased levels of mutant HTRA2 protein, the structural subunits and complexes of the mitochondrial respiratory chain appeared normal. We did detect a profound defect in OPA1 processing in HTRA2-deficient fibroblasts, suggesting a role for HTRA2 in the regulation of mitochondrial dynamics and OPA1 proteolysis. In addition, investigated subject fibroblasts were more susceptible to apoptotic insults. Our data support recent studies that described important functions for HTRA2 in programmed cell death and confirm that patients with genetically-unresolved 3-MGA-uria should be screened by WES with pathogenic variants in the HTRA2 gene prioritised for further analysis.


Assuntos
Variação Genética/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Erros Inatos do Metabolismo/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Morte Celular/genética , Células Cultivadas , Criança , Exoma/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Serina Proteases/genética , Síndrome
2.
Mol Genet Metab ; 106(4): 439-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22658692

RESUMO

INTRODUCTION: 3-Methyl CoA carboxylase (3-MCC) deficiency is an inborn error of metabolism in the catabolism of the amino acid leucine. Original reports suggested this disorder was associated with significant neurological and biochemical effects. However newborn screening has identified a higher than expected incidence of this disorder with apparent normal outcome in most cases. METHOD: A retrospective analysis of thirty-five cases of 3-MCC deficiency identified by newborn screening and diagnosed by enzyme or molecular analysis. RESULTS: There was a strong inverse correlation between initial C5OH level and residual enzyme activity. A few reports of hypoglycemia, ketosis, poor feeding/failure to thrive or fasting intolerance were reported, but there was no clear relationship between symptoms and residual enzyme activity. Developmental outcome included several children with mental retardation (including one with Down syndrome and one with schizencephaly) and two with Autism Spectrum disorders but there was no apparent relationship to residual enzyme activity. Free carnitine deficiency was relatively common. DISCUSSION: Although residual enzyme activity was clearly related to metabolite elevation, there was no apparent relationship with other measures of outcome. The number of reports of neurologic abnormalities or metabolic symptoms (poor feeding, hypoglycemia, fasting intolerance, etc.) is concerning, but the significance is unclear in this retrospective sample.


Assuntos
Carbono-Carbono Ligases/deficiência , Triagem Neonatal/métodos , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Distúrbios Congênitos do Ciclo da Ureia/enzimologia
4.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878125

RESUMO

We developed an in vitro model system where induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional human hepatic organoids (HOs) through stages that resemble human liver during its embryonic development. The HOs consist of hepatocytes, and cholangiocytes, which are organized into epithelia that surround the lumina of bile duct-like structures. The organoids provide a potentially new model for liver regenerative processes, and were used to characterize the effect of different JAG1 mutations that cause: (a) Alagille syndrome (ALGS), a genetic disorder where NOTCH signaling pathway mutations impair bile duct formation, which has substantial variability in its associated clinical features; and (b) Tetralogy of Fallot (TOF), which is the most common form of a complex congenital heart disease, and is associated with several different heritable disorders. Our results demonstrate how an iPSC-based organoid system can be used with genome editing technologies to characterize the pathogenetic effect of human genetic disease-causing mutations.


Assuntos
Síndrome de Alagille/genética , Doenças Genéticas Inatas/patologia , Fígado/metabolismo , Organoides/metabolismo , Tetralogia de Fallot/genética , Diferenciação Celular , Doenças Genéticas Inatas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteína Jagged-1/genética , Fígado/patologia , Mutação Puntual , Receptores Notch/metabolismo , Transdução de Sinais/genética
5.
Am J Med Genet A ; 133A(1): 53-7, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15637732

RESUMO

Walker-Warburg syndrome (WWS) is an autosomal recessive disorder of infancy characterized by hydrocephalus, agyria, retinal dysplasia, congenital muscular dystrophy, and over migration of neurons through a disrupted pial surface resulting in leptomeningeal heterotopia. Although previous work identified mutations in the o-mannosyl transferase, POMT1, in 6 out of 30 WWS families [Beltran-Valero de Bernabe et al., 2002], the incidence of POMT1 mutations in WWS is not known. We sequenced the entire coding region of POMT1 in 30 consecutive, unselected patients with classic WWS. Two novel heterozygous mutations were found in two patients from non-consanguineous parents, whereas 28 other patients failed to show any POMT1 mutations. One patient was found to be heterozygous for a transition, g.1233T > A, which predicts p.Y352X. A second patient was found also to be heterozygous for a transition g.1790C > G, which predicts p.S537R. As an additional determination of the frequency of the POMT1 mutations in WWS, we tested for linkage of WWS to POMT1 in six consanguineous families. All six demonstrated heterozygosity and negative LOD scores at the POMT1 locus. From these data we show that POMT1 is an uncommon cause of WWS, the incidence of coding region mutations in this population of WWS being less than 7%. We conclude that while the incidence of POMT1 mutations in WWS can be as high as 20% as reported by Beltran-Valero de Bernabe et al. [2002] and it can be as low as approximately 7%, as reported here.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades do Olho , Manosiltransferases/genética , Distrofias Musculares/patologia , Mutação , Anormalidades Múltiplas/etnologia , Anormalidades Múltiplas/patologia , Sequência de Bases , Cromossomos Humanos Par 9/genética , Consanguinidade , DNA/química , DNA/genética , Análise Mutacional de DNA , Feminino , Ligação Genética , Humanos , Escore Lod , Masculino , Repetições de Microssatélites , Linhagem , Polimorfismo de Nucleotídeo Único , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA