Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Infect Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622836

RESUMO

Cryptococcus neoformans (Cn) is an opportunistic fungus that causes severe central nervous system (CNS) disease in immunocompromised individuals. Brain parenchyma invasion requires fungal traversal of the blood-brain barrier. In this study, we describe that Cn alters the brain endothelium by activating small GTPase RhoA, causing reorganization of the actin cytoskeleton and tight junction modulation to regulate endothelial barrier permeability. We confirm that the main fungal capsule polysaccharide glucuronoxylomannan is responsible for these alterations. We reveal a therapeutic benefit of RhoA inhibition by CCG-1423 in vivo. RhoA inhibition prolonged survival and reduced fungal burden in a murine model of disseminated cryptococcosis, supporting the therapeutic potential targeting RhoA in the context of cryptococcal infection. We examine the complex virulence of Cn in establishing CNS disease, describing cellular components of the brain endothelium that may serve as molecular targets for future antifungal therapies to alleviate the burden of life-threatening cryptococcal CNS infection.

2.
Antimicrob Agents Chemother ; 67(10): e0045923, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37750714

RESUMO

Cryptococcus neoformans (Cn) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Meningoencefalite , Humanos , Camundongos , Animais , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/uso terapêutico , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Anfotericina B/uso terapêutico , Flucitosina/uso terapêutico , Meningoencefalite/tratamento farmacológico
3.
Med Mycol ; 60(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869980

RESUMO

This study explores the growth of bacterial, fungal, and interkingdom biofilms under aerobiosis or microaerobic conditions and the effect of ozonated sunflower oil on these biofilms. Candida species and Streptococcus mutans were used to study this interaction due to their importance in oral health and disease as these microorganisms display a synergistic relationship that manifests in the onset of caries and tooth decay. Biofilms were developed in a 96-well microtiter plate at 37ºC for 24 h, under aerobiosis or microaerobic conditions, and treated with ozonated oil for 5 to 120 min. All the microorganisms formed biofilms in both oxygenation conditions. Scanning electron microscopy was used to visualize biofilm morphology. Rodent experiments were performed to verify the oil-related toxicity and its efficacy in oral candidiasis. The growth of all Candida species was increased when co-cultured with S. mutans, whilst the growth of bacterium was greater only when co-cultured with C. krusei and C. orthopsilosis under aerobiosis and microaerobic conditions, respectively. Regardless of the oxygenation condition, ozonated oil significantly reduced the viability of all the tested biofilms and infected mice, showing remarkable microbicidal activity as corroborated with confocal microscopy and minimal toxicity. Thus, ozonated oil therapy can be explored as a strategy to control diseases associated with these biofilms especially in the oral cavity. LAY SUMMARY: We demonstrated that ozonated sunflower oil is effective at killing the biofilms formed by Candida species, by the bacterium Streptococcus mutans, or by both micoorganisms that can interact in the oral cavity, making it a potential therapeutic option for the treatment of these infections.


Assuntos
Candida , Streptococcus mutans , Animais , Biofilmes , Candida albicans , Camundongos , Óleo de Girassol
4.
Mol Reprod Dev ; 81(11): 983-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25269776

RESUMO

Despite reports that circulating levels of maternal serum exosomes increase during pregnancy and that placenta-specific microRNAs (miRNAs) have been identified in humans, little is known about exosomes and miRNAs during pregnancy in agriculture animals. In this study, we characterized the expression of 94 miRNAs in ovine placentomes at gestation day (GD) 90 by real-time PCR, and then investigated the presence of these miRNAs in exosome samples isolated from maternal jugular blood in non-pregnant ewes and at GD30 and GD90 and in umbilical blood collected at GD90. In maternal jugular exosome samples, 13 miRNAs were present in lower and 12 miRNAs were present in higher amounts at GD90 compared to non-pregnant (GD0) or GD30. Additionally, 12 miRNAs were present in higher amounts in umbilical venous exosomes compared to umbilical arterial exosomes; only miR-132 was lower in exosomes isolated from umbilical venous blood than from umbilical arterial blood. In placentome samples, miR-34c and miR135a abundance was higher in cotyledon tissue than in caruncle, while miR-183 and miR-379 amounts were higher in caruncle than cotyledon tissue. Only miR-379 was differentially expressed in all serum exosomes and placentome samples. Pathway analysis predicted that differentially expressed maternal serum exosomal miRNAs target Cellular Growth and Proliferation and Organ Development pathways, while umbilical serum exosomal and placentomes miRNAs were predicted to target cellular development and organismal/embryonic development.


Assuntos
Exossomos/metabolismo , Sangue Fetal/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Ovinos/genética , Animais , Exossomos/genética , Feminino , Idade Gestacional , MicroRNAs/sangue , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Ovinos/sangue
5.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090670

RESUMO

Cryptococcus neoformans ( Cn ) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.

6.
PLoS Negl Trop Dis ; 17(1): e0011068, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656900

RESUMO

Infection of the Central Nervous System (CNS) by the encapsulated fungus Cryptococcus neoformans can lead to high mortality meningitis, most commonly in immunocompromised patients. While the mechanisms by which the fungus crosses the blood-brain barrier to initiate infection in the CNS are well recognized, there are still substantial unanswered questions about the disease progression once the fungus is established in the brain. C. neoformans is characterized by a glucuronoxylomannan (GXM)-rich polysaccharide capsule which has been implicated in immune evasion, but its role during the host CNS infection needs further elucidation. Therefore, the present study aims to examine these key questions about the mechanisms underlying cryptococcal meningitis progression and the impact of fungal GXM release by using an intracerebral rodent infection model via stereotaxic surgery. After developing brain infection, we analyzed distinct brain regions and found that while fungal load and brain weight were comparable one-week post-infection, there were region-specific histopathological (with and without brain parenchyma involvement) and disease manifestations. Moreover, we also observed a region-specific correlation between GXM accumulation and glial cell recruitment. Furthermore, mortality was associated with the presence of subarachnoid hemorrhaging and GXM deposition in the meningeal blood vessels and meninges in all regions infected. Our results show that using the present infection model can facilitate clinical and neuropathological observations during the progression of neurocryptococcosis. Importantly, this mouse model can be used to further investigate disease progression as it develops in humans.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Humanos , Animais , Camundongos , Criptococose/microbiologia , Sistema Nervoso Central , Meningite Criptocócica/microbiologia , Polissacarídeos , Modelos Animais de Doenças , Progressão da Doença
7.
Front Cell Infect Microbiol ; 12: 974200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081774

RESUMO

Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 µM) and oseltamivir (20 µM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.


Assuntos
Cistos , Giardíase , Animais , Giardia/metabolismo , Giardíase/parasitologia , Microdomínios da Membrana/metabolismo , Camundongos , Oseltamivir , Proteômica , Proteínas de Protozoários/metabolismo , Fatores de Virulência/metabolismo
8.
Biol Invasions ; 23(6): 1933-1948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776763

RESUMO

Monitoring the invasion process of the Asian tiger mosquito Aedes albopictus and its interaction with the contender Aedes aegypti, is critical to prevent and control the arthropod-borne viruses (i.e., Arboviruses) they transmit to humans. Generally, the superior ecological competitor Ae. albopictus displaces Ae. aegypti from most geographic areas, with the combining factors of biology and environment influencing the competitive outcome. Nonetheless, detailed studies asserting displacement come largely from sub-tropical areas, with relatively less effort being made in tropical environments, including no comprehensive research about Aedes biological interactions in Mesoamerica. Here, we examine contemporary and historical mosquito surveillance data to assess the role of shifting abiotic conditions in shaping the spatiotemporal distribution of competing Aedes species in the Republic of Panama. In accordance with prior studies, we show that Ae. albopictus has displaced Ae. aegypti under suboptimal wet tropical climate conditions and more vegetated environments within the southwestern Azuero Peninsula. Conversely, in the eastern Azuero Peninsula, Ae. aegypti persists with Ae. albopictus under optimal niche conditions in a dry and more seasonal tropical climate. While species displacement was stable over the course of two years, the presence of both species generally appears to fluctuate in tandem in areas of coexistence. Aedes albopictus was always more frequently found and abundant regardless of location and climatic season. The heterogenous environmental conditions of Panama shape the competitive outcome and micro-geographic distribution of Aedes mosquitoes, with potential consequences for the transmission dynamics of urban and sylvatic zoonotic diseases. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10530-021-02482-y).

9.
Parasit Vectors ; 12(1): 264, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133041

RESUMO

BACKGROUND: The long-distance dispersal of the invasive disease vectors Aedes aegypti and Aedes albopictus has introduced arthropod-borne viruses into new geographical regions, causing a significant medical and economic burden. The used-tire industry is an effective means of Aedes dispersal, yet studies to determine Aedes occurrence and the factors influencing their distribution along local transport networks are lacking. To assess infestation along the primary transport network of Panama we documented all existing garages that trade used tires on the highway and surveyed a subset for Ae. aegypti and Ae. albopictus. We also assess the ability of a mass spectrometry approach to classify mosquito eggs by comparing our findings to those based on traditional larval surveillance. RESULTS: Both Aedes species had a high infestation rate in garages trading used tires along the highways, providing a conduit for rapid dispersal across Panama. However, generalized linear models revealed that the presence of Ae. aegypti is associated with an increase in road density by a log-odds of 0.44 (0.73 ± 0.16; P = 0.002), while the presence of Ae. albopictus is associated with a decrease in road density by a log-odds of 0.36 (0.09 ± 0.63; P = 0.008). Identification of mosquito eggs by mass spectrometry depicted similar occurrence patterns for both Aedes species as that obtained with traditional rearing methods. CONCLUSIONS: Garages trading used tires along highways should be targeted for the surveillance and control of Aedes-mosquitoes and the diseases they transmit. The identification of mosquito eggs using mass spectrometry allows for the rapid evaluation of Aedes presence, affording time and cost advantages over traditional vector surveillance; this is of importance for disease risk assessment.


Assuntos
Aedes , Borracha , Distribuição Animal , Animais , Arbovírus , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Veículos Automotores , Panamá , Meios de Transporte
10.
Biomed Res Int ; 2015: 701390, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583126

RESUMO

Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT), induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.


Assuntos
MicroRNAs/genética , Invasividade Neoplásica/genética , Neoplasias Ovarianas/genética , Proteínas de Ligação a RNA/biossíntese , Movimento Celular/genética , Transformação Celular Neoplásica/metabolismo , Transição Epitelial-Mesenquimal/genética , Exossomos/genética , Exossomos/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/biossíntese , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/patologia , Proteínas de Ligação a RNA/genética
11.
PLoS One ; 10(2): e0117472, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25675430

RESUMO

Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR). Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs) to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE) in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.


Assuntos
Histona Desmetilases/metabolismo , Placenta/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Animais , Metilação de DNA , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases/genética , Humanos , Placenta/anatomia & histologia , Placenta/efeitos dos fármacos , Gravidez , Ligação Proteica , Proteoma , Receptores Androgênicos/genética , Ovinos , Propionato de Testosterona/farmacologia , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA