RESUMO
OBJECTIVE: The purpose was to investigate the effects of hearing-loss and fast-acting compression on speech intelligibility and two measures of temporal modulation sensitivity. DESIGN: Twelve adults with normal hearing (NH) and 16 adults with mild to moderately severe sensorineural hearing loss were tested. Amplitude modulation detection and modulation-depth discrimination (MDD) thresholds with sinusoidal carriers of 1 or 5 kHz and modulators in the range from 8 to 256 Hz were used as measures of temporal modulation sensitivity. Speech intelligibility was assessed by obtaining speech reception thresholds in stationary and fluctuating background noise. All thresholds were obtained with and without compression (using a fixed compression ratio of 2:1). RESULTS: For modulation detection, the thresholds were similar or lower for the group with hearing loss than for the group with NH. In contrast, the MDD thresholds were higher for the group with hearing loss than for the group with NH. Fast-acting compression increased the modulation detection thresholds, while no effect of compression on the MDD thresholds was observed. The speech reception thresholds obtained in stationary noise were slightly increased in the compression condition relative to the linear processing condition, whereas no difference in the speech reception thresholds obtained in fluctuating noise was observed. For the group with NH, individual differences in the MDD thresholds could account for 72% of the variability in the speech reception thresholds obtained in stationary noise, whereas the correlation was insignificant for the hearing-loss group. CONCLUSIONS: Fast-acting compression can restore modulation detection thresholds for listeners with hearing loss to the values observed for listeners with NH. Despite this normalization of the modulation detection thresholds, compression does not seem to provide a benefit for speech intelligibility. Furthermore, fast-acting compression may not be able to restore MDD thresholds to the values observed for listeners with NH, suggesting that the two measures of amplitude modulation sensitivity represent different aspects of temporal processing. For listeners with NH, the ability to discriminate modulation depth was highly correlated with speech intelligibility in stationary noise.
Assuntos
Auxiliares de Audição , Perda Auditiva Neurossensorial/reabilitação , Percepção da Fala , Adulto , Limiar Auditivo , Estudos de Casos e Controles , Feminino , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Hiperacusia , Masculino , Pessoa de Meia-Idade , Ruído , Detecção de Recrutamento Audiológico , Adulto JovemRESUMO
The symmetric biphasic pulses used in contemporary cochlear implants (CIs) consist of both cathodic and anodic currents, which may stimulate different sites on spiral ganglion neurons and, potentially, interact with each other. The effect on the order of anodic and cathodic stimulation on loudness at short inter-pulse intervals (IPIs; 0-800 µs) is investigated. Pairs of opposite-polarity pseudomonophasic (PS) pulses were used and the amplitude of each pulse was manipulated independently. In experiment 1 the two PS pulses differed in their current level in order to elicit the same loudness when presented separately. Six users of the Advanced Bionics CI (Valencia, CA) loudness-ranked trains of the pulse pairs using a midpoint-comparison procedure. Stimuli with anodic-leading polarity were louder than those with cathodic-leading polarity for IPIs shorter than 400 µs. This effect was small-about 0.3 dB-but consistent across listeners. When the same procedure was repeated with both PS pulses having the same current level (experiment 2), anodic-leading stimuli were still louder than cathodic-leading stimuli at very short intervals. However, when using symmetric biphasic pulses (experiment 3) the effect disappeared at short intervals and reversed at long intervals. Possible peripheral sources of such polarity interactions are discussed.
Assuntos
Percepção Auditiva/fisiologia , Implantes Cocleares/efeitos adversos , Percepção Sonora/fisiologia , Gânglio Espiral da Cóclea/fisiopatologia , Estimulação Acústica , Idoso , Implante Coclear/métodos , Implantes Cocleares/estatística & dados numéricos , Estimulação Elétrica/efeitos adversos , Eletrodos Implantados/normas , Humanos , Pessoa de Meia-Idade , Discriminação da Altura Tonal/fisiologia , Desenho de Prótese , Gânglio Espiral da Cóclea/cirurgiaRESUMO
Different computational models have been developed to study the interaural time difference (ITD) perception. However, only few have used a physiologically inspired architecture to study ITD discrimination. Furthermore, they do not include aspects of hearing impairment. In this work, a framework was developed to predict ITD thresholds in listeners with normal and impaired hearing. It combines the physiologically inspired model of the auditory periphery proposed by Zilany, Bruce, Nelson, and Carney [(2009). J. Acoust. Soc. Am. 126(5), 2390-2412] as a front end with a coincidence detection stage and a neurometric decision device as a back end. It was validated by comparing its predictions against behavioral data for narrowband stimuli from literature. The framework is able to model ITD discrimination of normal-hearing and hearing-impaired listeners at a group level. Additionally, it was used to explore the effect of different proportions of outer- and inner-hair cell impairment on ITD discrimination.
Assuntos
Percepção Auditiva , Orelha/fisiologia , Perda Auditiva/fisiopatologia , Modelos Neurológicos , Tempo de Reação , Adulto , Vias Auditivas/fisiologia , Vias Auditivas/fisiopatologia , Orelha/fisiopatologia , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Up to medium intensities and in the 80-100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Φi of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different frequency specific ASSR generators.
RESUMO
The relevance of comodulation and interaural phase difference for speech perception is still unclear. We used speech-like stimuli to link spectro-temporal properties of formants with masking release. The stimuli comprised a tone and three masker bands centered at formant frequencies F1, F2, and F3 derived from a consonant-vowel. The target was a diotic or dichotic frequency-modulated tone following F2 trajectories. Results showed a small comodulation masking release, while the binaural masking level difference was comparable to previous findings. The data suggest that factors other than comodulation may play a dominant role in grouping frequency components in speech.
Assuntos
Mascaramento Perceptivo , Percepção da Fala , Humanos , Mascaramento Perceptivo/fisiologia , Percepção da Fala/fisiologia , Adulto , Estimulação Acústica , Masculino , Feminino , Adulto JovemRESUMO
This study aimed to assess the validity of a high-frequency audiometry tool based on Bayesian learning to provide a reliable, repeatable, automatic, and fast test to clinics. The study involved 85 people (138 ears) who had their high-frequency thresholds measured with three tests: standard audiometry (SA), alternative forced choice (AFC)-based algorithm, and Bayesian active (BA) learning-based algorithm. The results showed median differences within ±5 dB up to 10 kHz when comparing the BA with the other two tests, and median differences within ±10 dB at higher frequencies. The variability increased from lower to higher frequencies. The BA showed lower thresholds compared to the SA at the majority of the frequencies. The results of the different tests were consistent across groups (age, hearing loss, and tinnitus). The data for the BA showed high test-retest reliability (>90%). The time required for the BA was shorter than for the AFC (4â min vs. 13â min). The data suggest that the BA test for high-frequency audiometry could be a good candidate for clinical screening. It would add reliable and significant information without adding too much time to the visit.
Assuntos
Surdez , Aprendizagem , Humanos , Teorema de Bayes , Reprodutibilidade dos Testes , Audiometria de Tons PurosRESUMO
A common characteristic of natural sounds is that the level fluctuations in different frequency regions are coherent. The ability of the auditory system to use this comodulation is shown when a sinusoidal signal is masked by a masker centred at the signal frequency (on-frequency masker, OFM) and one or more off-frequency components, commonly referred to as flanking bands (FBs). In general, the threshold of the signal masked by comodulated masker components is lower than when masked by masker components with uncorrelated envelopes or in the presence of the OFM only. This effect is commonly referred to as comodulation masking release (CMR). The present study investigates if CMR is also observed for a sinusoidal signal embedded in the OFM when the centre frequencies of the FBs are swept over time with a sweep rate of one octave per second. Both a common change of different frequencies and comodulation could serve as cues to indicate which of the stimulus components originate from one source. If the common fate of frequency components is the stronger binding cue, the sweeping FBs and the OFM with a fixed centre frequency should no longer form one auditory object and the CMR should be abolished. However, psychoacoustical results with normal-hearing listeners show that a CMR is also observed with sweeping components. The results are consistent with the hypothesis of wideband inhibition as the underlying physiological mechanism, as the CMR should only depend on the spectral position of the flanking bands relative to the inhibitory areas (as seen in physiological recordings using stationary flanking bands). Preliminary physiological results in the cochlear nucleus of the Guinea pig show that a correlate of CMR can also be found at this level of the auditory pathway with sweeping flanking bands.
Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Núcleo Coclear/fisiologia , Mascaramento Perceptivo/fisiologia , Psicoacústica , Estimulação Acústica/métodos , Animais , Vias Auditivas/fisiologia , Limiar Auditivo/fisiologia , Eletrofisiologia , Cobaias , Humanos , Reconhecimento Fisiológico de Modelo/fisiologia , Detecção de Sinal Psicológico/fisiologiaRESUMO
Introduction: Hearing ability is usually evaluated by assessing the lowest detectable intensity of a target sound, commonly referred to as a detection threshold. Detection thresholds of a masked signal are dependent on various auditory cues, such as the comodulation of the masking noise, interaural differences in phase, and temporal context. However, considering that communication in everyday life happens at sound intensities well above the detection threshold, the relevance of these cues for communication in complex acoustical environments is unclear. Here, we investigated the effect of three cues on the perception and neural representation of a signal in noise at supra-threshold levels. Methods: First, we measured the decrease in detection thresholds produced by three cues, referred to as masking release. Then, we measured just-noticeable difference in intensity (intensity JND) to quantify the perception of the target signal at supra-threshold levels. Lastly, we recorded late auditory evoked potentials (LAEPs) with electroencephalography (EEG) as a physiological correlate of the target signal in noise at supra-threshold levels. Results: The results showed that the overall masking release can be up to around 20 dB with a combination of these three cues. At the same supra-threshold levels, intensity JND was modulated by the masking release and differed across conditions. The estimated perception of the target signal in noise was enhanced by auditory cues accordingly, however, it did not differ across conditions when the target tone level was above 70 dB SPL. For the LAEPs, the P2 component was more closely linked to the masked threshold and the intensity discrimination than the N1 component. Discussion: The results indicate that masking release affects the intensity discrimination of a masked target tone at supra-threshold levels, especially when the physical signal-to-noise is low, but plays a less significant role at high signal-to-noise ratios.
RESUMO
Tinnitus is a complex and not yet fully understood phenomenon. Often the treatments provided are effective only for subgroups of sufferers. We are presently not able to predict benefit with the currently available diagnostic tools and analysis methods. Being able to identify and specifically treat sub-categories of tinnitus would help develop and implement more targeted treatments with higher success rate. In this study we use a clustering analysis based on 17 predictors to cluster an audiologically homogeneous group of normal hearing participants, both with and without tinnitus. The predictors have been chosen to be either tinnitus-specific measures or measures that are thought to be connected to cochlear synaptopathy. Our aim was to identify a subgroup of participants with characteristics consistent with the current hypothesized impact of cochlear synaptopathy. Our results show that this approach can separate the listeners into different clusters. But not in all cases could the tinnitus sufferers be separated from the control group. Another challenge is the use of categorical measures which seem to dominate the importance analysis of the factors. The study showed that data-driven clustering of a homogeneous listener group based on a mixed set of experimental outcome measures is a promising tool for tinnitus sub-typing, with the caveat that sample sizes might need to be sufficiently high, and higher than in the present study, to keep a meaningful sample size after clustering.
Assuntos
Zumbido , Humanos , Zumbido/diagnóstico , Audição , Cóclea , Testes AuditivosRESUMO
Individual estimates of cochlear compression may provide complementary information to traditional audiometric hearing thresholds in disentangling different types of peripheral cochlear damage. Here we investigated the use of the slope of envelope following response (EFR) magnitude-level functions obtained from four simultaneously presented amplitude modulated tones with modulation frequencies of 80-100 Hz as a proxy of peripheral level compression. Compression estimates in individual normal hearing (NH) listeners were consistent with previously reported group-averaged compression estimates based on psychoacoustical and distortion-product oto-acoustic emission (DPOAE) measures in human listeners. They were also similar to basilar membrane (BM) compression values measured invasively in non-human mammals. EFR-based compression estimates in hearing-impaired listeners were less compressive than those for the NH listeners, consistent with a reduction of BM compression. Cochlear compression was also estimated using DPOAEs in the same NH listeners. DPOAE estimates were larger (less compressive) than EFRs estimates, showing no correlation. Despite the numerical concordance between EFR-based compression estimates and group-averaged estimates from other methods, simulations using an auditory nerve (AN) model revealed that compression estimates based on EFRs might be highly influenced by contributions from off-characteristic frequency (CF) neural populations. This compromises the possibility to estimate on-CF (i.e., frequency-specific or "local") peripheral level compression with EFRs.
RESUMO
An aided sound-field auditory steady-state response (ASSR) has the potential to be used to objectively validate hearing-aid (HA) fittings in clinics. Each aided ear should ideally be tested independently, but it is suspected that binaural testing may be used by clinics to reduce test time. This study simulates dichotic ASSR sound-field conditions to examine the risk of making false judgments due to unchecked binaural effects. Unaided ASSRs were recorded with a clinical two-channel electroencephalography (EEG) system for 15 normal hearing subjects using a three-band CE-Chirp® stimulus. It was found that the noise corrected power of a response harmonic can be suppressed by up to 10 dB by introducing large interaural time differences equal to half the time period of the stimulus envelope, which may occur in unilateral HA users. These large interaural time differences also changed the expression of ASSR power across the scalp, resulting in dramatically altered topographies. This would lead to considerably lower measured response power and possibly nondetections, evidencing that even well fit HAs are fit poorly (false referral), whereas monaural ASSR tests would pass. No effect was found for simulated lateralizations of the stimulus, which is beneficial for a proposed aided ASSR approach. Full-scalp ASSR recordings match previously found 40 Hz topographies but demonstrate suppression of cortical ASSR sources when using stimuli in interaural envelope antiphase.
Assuntos
Auxiliares de Audição , Ruído , Estimulação Acústica , Limiar Auditivo , Eletroencefalografia , HumanosRESUMO
A model of the cochlea was used to bridge the gap between model approaches commonly used to investigate phenomena related to otoacoustic emissions and more filter-based model approaches often used in psychoacoustics. In the present study, a nonlinear and active one-dimensional transmission line model was developed that accounts for several aspects of physiological data with a single fixed parameter set. The model shows plausible excitation patterns and an input-output function similar to the linear-compressive-linear function as hypothesized in psychoacoustics. The model shows realistic results in a two-tone suppression paradigm and a plausible growth function of the 2f(1)-f(2) component of distortion product otoacoustic emissions. Finestructure was found in simulated stimulus-frequency otoacoustic emissions (SFOAE) with realistic levels and rapid phase rotation. A plausible "threshold in quiet" including finestructure and spontaneous otoacoustic emissions (SOAE) could be simulated. It is further shown that psychoacoustical data of modulation detection near threshold can be explained by the mechanical dynamics of the modeled healthy cochlea. It is discussed that such a model can be used to investigate the representation of acoustic signals in healthy and impaired cochleae at this early stage of the auditory pathway for both, physiological as well as psychoacoustical paradigms.
Assuntos
Cóclea/fisiologia , Mecanotransdução Celular , Modelos Biológicos , Psicoacústica , Estimulação Acústica , Audiometria de Tons Puros , Limiar Auditivo , Humanos , Dinâmica não Linear , Emissões Otoacústicas Espontâneas , Mascaramento Perceptivo , Detecção de Sinal Psicológico , Espectrografia do SomRESUMO
The auditory system uses interaural time and level differences (ITD and ILD) as cues to localize and lateralize sounds. The availability of ITDs and ILDs in the auditory system is limited by neural phase-locking and by the head size, respectively. Although the frequency-specific limitations are well known, the relative contribution of ITDs and ILDs in individual frequency bands in broadband stimuli is unknown. To determine these relative contributions, or spectral weights, listeners were asked to lateralize stimuli consisting of eleven simultaneously presented 1-ERB-wide noise bands centered between 442 and 5544 Hz and separated by 1-ERB-wide gaps. Either ITDs or ILDs were varied independently across each noise band, while fixing the other interaural disparity to either 0 dB or 0 µs. The weights were obtained using a multiple linear regression analysis. In a second experiment, the effect of auditory enhancement on the spectral weights was investigated. The enhancement of single noise bands was realized by presenting ten of the noise bands as preceding and following sounds (pre- and post-cursors, respectively). Listeners were asked to lateralize the stimuli as in the first experiment. Results show that in the absence of pre- and post-cursors, only the lowest or highest frequency band received highest weight for ITD and ILD, respectively. Auditory enhancement led to significantly enhanced weights given to the band without the pre- and post-cursor. The weight enhancement could only be observed at low frequencies, when determined with ITD cues and for low and high frequencies for ILDs. Hence, the auditory system seems to be able to change the spectral weighting of binaural information depending on the information content.
Assuntos
Audição/fisiologia , Localização de Som/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
The effect of the relative timing between pairs of same-polarity monophasic pulses has been studied extensively in single-neuron animal studies and has revealed fundamental properties of the neurons. For human cochlear implant listeners, the requirement to use charge-balanced stimulation and the typical use of symmetric, biphasic pulses limits such measures, because currents of opposite polarities interact at the level of the neural membrane. Here, we propose a paradigm to study same-polarity summation of currents while keeping the stimulation charge-balanced within a short time window. We used pairs of mirrored pseudo-monophasic pulses (a long-low phase followed by a short-high phase for the first pulse and a short-high phase followed by a long-low phase for the second pulse). We assumed that most of the excitation would stem from the two adjacent short-high phases, which had the same polarity. The inter-pulse interval between the short-high phases was varied from 0 to 345 µs. The inter-pulse interval had a significant effect on the perceived loudness, and this effect was consistent with both passive (membrane-related) and active (ion-channel-related) neuronal mechanisms contributing to facilitation. Furthermore, the effect of interval interacted with the polarity of the pulse pairs. At threshold, there was an effect of polarity, but, surprisingly, no effect of interval nor an interaction between the two factors. We discuss possible peripheral origins of these results.
Assuntos
Limiar Auditivo , Implantes Cocleares , Percepção Sonora , Adulto , Idoso , Humanos , Pessoa de Meia-IdadeRESUMO
We are constantly exposed to a mixture of sounds of which only few are important to consider. In order to improve detectability and to segregate important sounds from less important sounds, the auditory system uses different aspects of natural sound sources. Among these are (a) its specific location and (b) synchronous envelope fluctuations in different frequency regions. Such a comodulation of different frequency bands facilitates the detection of tones in noise, a phenomenon known as comodulation masking release (CMR). Physiological as well as psychoacoustical studies usually investigate only one of these strategies to segregate sounds. Here we present psychoacoustical data on CMR for various virtual locations of the signal by varying its interaural phase difference (IPD). The results indicate that the masking release in conditions with binaural (interaural phase differences) and across-frequency (synchronous envelope fluctuations, i.e. comodulation) cues present is equal to the sum of the masking releases for each of the cues separately. Data and model predictions with a simplified model of the auditory system indicate an independent and serial processing of binaural cues and monaural across-frequency cues, maximizing the benefits from the envelope comparison across frequency and the comparison of fine structure across ears.
Assuntos
Percepção Auditiva/fisiologia , Mascaramento Perceptivo/fisiologia , Estimulação Acústica , Adulto , Algoritmos , Vias Auditivas/fisiologia , Limiar Auditivo , Orelha , Feminino , Humanos , Masculino , Modelos Biológicos , Psicoacústica , Espectrografia do Som , Fatores de Tempo , Adulto JovemRESUMO
Several masking experiments have shown that the auditory system is able to use coherent envelope fluctuations of the masker across frequency within one ear as well as differences in interaural disparity between signal and masker to enhance signal detection. The two effects associated with these abilities are comodulation masking release (CMR) and binaural masking level difference (BMLD). The aim of the present study was to investigate the combination of CMR and BMLD. Thresholds for detecting a sinusoidal signal were measured in a flanking-band paradigm at three different signal frequencies. The masker was presented diotically, and various interaural phase differences (IPDs) of the signal were used. The masker components were either multiplied or Gaussian narrowband noises. In addition, a transposed stimulus was used to increase the BMLD at a high signal frequency. For all frequencies and masker conditions, thresholds decreased as the signal IPD increased and were lower when the masker components were comodulated. The data show an addition of the monaural and binaural masking releases in decibels when masker conditions with and without comodulation and the same spectrum were compared.
Assuntos
Limiar Auditivo/fisiologia , Mascaramento Perceptivo/fisiologia , Psicoacústica , Localização de Som/fisiologia , Estimulação Acústica/métodos , Adulto , Audiometria de Tons Puros , Interpretação Estatística de Dados , Humanos , Adulto JovemRESUMO
The neural representation and perceptual salience of tonal signals presented in different noise maskers were investigated. The properties of the maskers and signals were varied such that they produced different amounts of either monaural masking release, binaural masking release, or a combination of both. The signals were then presented at different levels above their corresponding masked thresholds and auditory evoked potentials (AEPs) were measured. It was found that, independent of the masking condition, the amplitude of the P2 component of the AEP was similar for the same stimulus levels above masked threshold, suggesting that both monaural and binaural effects of masking release were represented at the level of the auditory pathway where P2 is generated. The perceptual salience of the signal was evaluated at equal levels above masked threshold using a rating task. In contrast to the electrophysiological findings, the subjective ratings of the perceptual signal salience were less consistent with the signal level above masked threshold and varied strongly across listeners and masking conditions. Overall, the results from the present study suggest that the P2 amplitude of the AEP represents an objective indicator of the audibility of a target signal in the presence of complex acoustic maskers.
Assuntos
Potenciais Evocados/fisiologia , Razão Sinal-Ruído , Percepção da Fala/fisiologia , Estimulação Acústica , Adulto , Eletrofisiologia/métodos , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Adulto JovemRESUMO
The healthy auditory system enables communication in challenging situations with high levels of background noise. Yet, despite normal sensitivity to pure tones, many listeners complain about having difficulties in such situations. Recent animal studies demonstrated that noise overexposure that produces temporary threshold shifts can cause the loss of auditory nerve (AN) fiber synapses (i.e., cochlear synaptopathy, CS), which appears to predominantly affect medium- and low-spontaneous rate (SR) fibers. In the present study, envelope following response (EFR) magnitude-level functions were recorded in normal hearing (NH) threshold and mildly hearing-impaired (HI) listeners with thresholds elevated above 2 kHz. EFRs were elicited by sinusoidally amplitude modulated (SAM) tones presented in quiet with a carrier frequency of 2 kHz, modulated at 93 Hz, and modulation depths of 0.85 (deep) and 0.25 (shallow). While EFR magnitude-level functions for deeply modulated tones were similar for all listeners, EFR magnitudes for shallowly modulated tones were reduced at medium stimulation levels in some NH threshold listeners and saturated in all HI listeners for the whole level range. A phenomenological model of the AN was used to investigate the extent to which hair-cell dysfunction and/or CS could explain the trends observed in the EFR data. Hair-cell dysfunction alone, including postulated elevated hearing thresholds at extended high frequencies (EHF) beyond 8 kHz, could not account for the recorded EFR data. Postulated CS led to simulations generally consistent with the recorded data, but a loss of all types of AN fibers was required within the model framework. The effects of off-frequency contributions (i.e., away from the characteristic place of the stimulus) and the differential loss of different AN fiber types on EFR magnitude-level functions were analyzed. When using SAM tones in quiet as the stimulus, model simulations suggested that (1) EFRs are dominated by the activity of high-SR fibers at all stimulus intensities, and (2) EFRs at medium-to-high stimulus levels are dominated by off-frequency contributions.
Assuntos
Nervo Coclear/fisiopatologia , Perda Auditiva/fisiopatologia , Modelos Biológicos , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Animal studies demonstrate that noise exposure can permanently damage the synapses between inner hair cells and auditory nerve fibers, even when outer hair cells are intact and there is no clinically relevant permanent threshold shift. Synaptopathy disrupts the afferent connection between the cochlea and the central auditory system and is predicted to impair speech understanding in noisy environments and potentially result in tinnitus and/or hyperacusis. While cochlear synaptopathy has been demonstrated in numerous experimental animal models, synaptopathy can only be confirmed through post-mortem temporal bone analysis, making it difficult to study in living humans. A variety of non-invasive measures have been used to determine whether noise-induced synaptopathy occurs in humans, but the results are conflicting. The overall objective of this article is to synthesize the existing data on the functional impact of noise-induced synaptopathy in the human auditory system. The first section of the article summarizes the studies that provide evidence for and against noise-induced synaptopathy in humans. The second section offers potential explanations for the differing results between studies. The final section outlines suggested methodologies for diagnosing synaptopathy in humans with the aim of improving consistency across studies.
Assuntos
Percepção Auditiva , Cóclea/patologia , Cóclea/fisiopatologia , Doenças Cocleares/etiologia , Audição , Ruído/efeitos adversos , Doenças Cocleares/patologia , Doenças Cocleares/fisiopatologia , Sinapses Elétricas/patologia , Humanos , Fatores de RiscoRESUMO
A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike. A single ANF is modeled as a network of two exponential integrate-and-fire point-neuron models, referred to as peripheral and central axons of the ANF. The peripheral axon is excited by the cathodic charge, inhibited by the anodic charge, and exhibits longer spike latencies than the central axon; the central axon is excited by the anodic charge, inhibited by the cathodic charge, and exhibits shorter spike latencies than the peripheral axon. The model also includes subthreshold and suprathreshold adaptive feedback loops which continuously modify the membrane potential and can account for effects of facilitation, accommodation, refractoriness, and spike-rate adaptation in ANF. Although the model is parameterized using data for either single or paired pulse stimulation with monophasic rectangular pulses, it correctly predicts effects of various stimulus pulse shapes, stimulation pulse rates, and level on the neural response statistics. The model may serve as a framework to explore the effects of different stimulus parameters on psychophysical performance measured in cochlear implant listeners.